Featured Research

from universities, journals, and other organizations

Phytoplankton Cell Membranes Challenge Fundamentals Of Biochemistry

Date:
February 3, 2009
Source:
Woods Hole Oceanographic Institution
Summary:
Microscopic plants growing in the Sargasso Sea have come up with a completely unexpected way of building their cells.

Under low phosphorus conditions, cyanobacteria substitute SQDG for phospholipids as indicated by the orange arrow. Eukaryotic phytoplankton substitute betaine lipids for phospholipids as indicated by the yellow arrow. While cyanobacteria can produce cell membranes without phosphorus or nitrogen, eukaryotes cannot escape the nitrogen requirement.
Credit: Van Mooy et al., 2008-06-06280

Get ready to send the biology textbooks back to the printer. In a new paper published in Nature, Benjamin Van Mooy, a geochemist with the Woods Hole Oceanographic Institution (WHOI), and his colleagues report that microscopic plants growing in the Sargasso Sea have come up with a completely unexpected way of building their cells.

Until now, it was thought that all cells are surrounded by membranes containing molecules called phospholipids – oily compounds that contain phosphorus, as well as other basic biochemical nutrients including nitrogen. However, Van Mooy and his colleagues from WHOI, the University of Southern California, University of Hawaii, the Czech Academy of Sciences, the Bermuda Institute of Ocean Sciences, University of Southern Maine, and the Centre d’Ocιanologie de Marseille have found phytoplankton in the Sargasso Sea that make their cell membranes without using phospholipids, using non-phosphorus-containing ‘substitute lipids’ instead.  These substitute lipids were once regarded as merely a molecular peculiarity of phytoplankton grown in the laboratory, but are now recognized to be used by phytoplankton throughout the world’s ocean.

Substitute lipids “are the most abundant membrane molecules in the sea and they were essentially unknown until now,” says Van Mooy, whose work at WHOI was supported by the National Science Foundation, the Office of Naval Research, and the WHOI Ocean Life Institute. The finding could help rewrite the fundamentals of cell biochemistry.

The Sargasso Sea is in the middle of the Atlantic Ocean – an area known for its short supply of phosphorus and nitrogen. A molecule of phosphorus dissolved in the Sargasso Sea remains there for perhaps an hour or two before a phosphorus-starved cell greedily absorbs it. For comparison, in the Pacific Ocean phosphorus may linger for nearly a year before being used by plankton.

But oceanographers find phytoplankton living and growing rather well in the Sargasso Sea. In particular, small photosynthetic bacteria called cyanobacteria flourish in a place where nutrients like phosphorus are in as short supply as water is in the desert. How are they doing it? These creative plankton build a membrane lipid called SQDG, a molecule based on sulfur rather than phosphorus. Van Mooy explains, “Cyanobacteria can make membranes that require essentially no nutrients, no phosphorus and no nitrogen. Totally no nutrients at all.”

Van Mooy found that cyanobacteria aren’t the only class of plankton building phosphate-free cell membrane lipids. When he and his co-authors studied the more complex eukaryotic phytoplankton in the Sargasso Sea they found “this whole other class of substitute lipids, which were betaine molecules. We are the first people to report finding these molecules in the ocean.” These betaine molecules have structures that resemble amino acids, the building blocks of proteins.  But unlike the cyanobacterial SQDG, the betaine lipids require nitrogen. The more structurally sophisticated plants have dodged the phosphorus requirement, but they still have to have nitrogen.

Van Mooy thinks he’s on to something fundamental about the ways that phytoplankton survive in the ocean. Of his future research working out the dynamics of the membrane lipid substitutions Van Mooy says, “You could think of it like a tool. Something very basic. Maybe there is an underlying principle here that we will uncover.” Hold the presses on the textbooks until they do.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Cite This Page:

Woods Hole Oceanographic Institution. "Phytoplankton Cell Membranes Challenge Fundamentals Of Biochemistry." ScienceDaily. ScienceDaily, 3 February 2009. <www.sciencedaily.com/releases/2009/02/090202121028.htm>.
Woods Hole Oceanographic Institution. (2009, February 3). Phytoplankton Cell Membranes Challenge Fundamentals Of Biochemistry. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/02/090202121028.htm
Woods Hole Oceanographic Institution. "Phytoplankton Cell Membranes Challenge Fundamentals Of Biochemistry." ScienceDaily. www.sciencedaily.com/releases/2009/02/090202121028.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins