Featured Research

from universities, journals, and other organizations

Protective Shield Used By Hundreds Of Viruses Deciphered

Date:
February 17, 2009
Source:
Rice University
Summary:
A new image reveals the precise structure of the protective protein coat, or "capsid," shared by hundreds of known viruses. The image reveals the precise location of some 5 million atoms in a spherical type of capsid that many viruses use to shield their genomes.

High-energy X-ray diffraction was used to pinpoint some 5 million atoms in the protective protein coat used by hundreds of viruses.
Credit: J. Pan & Y.J. Tao/Rice University

 If a picture is worth a thousand words, then Rice University's precise new image of a virus' protective coat is seriously undervalued. More than three years in the making, the image contains some 5 million atoms -- each in precisely the right place -- and it could help scientists find better ways to both fight viral infections and design new gene therapies.

Related Articles


The stunning image, which appears online this week in the Proceedings of the National Academy of Sciences, reveals the structure of a type of protein coat shared by hundreds of known viruses containing double-stranded RNA genomes. The image was painstakingly created from hundreds of high-energy X-ray diffraction images and paints the clearest picture yet of the viruses' genome-encasing shell called a "capsid."

"When these viruses invade cells, the capsids get taken inside and never completely break apart," said lead researcher Jane Tao, assistant professor of biochemistry and cell biology at Rice.

Capsids come into play because viruses can reproduce themselves only by invading a host cell and highjacking its biochemical machinery. But when they invade, viruses need to seal off their genetic payload to prevent it from being destroyed by the cell's protective mechanisms.

Though there are more than 5,000 known viruses, including whole families that are marked by wide variations in genetic payload and other characteristics, most of them use either a helical or a spherical capsid.

In their attempt to map precisely the spherical variety, Tao and lead author Junhua Pan, a postdoctoral fellow at Rice, first had to create a crystalline form of the capsid that could be X-rayed. They chose the oft-studied Penicillium stoloniferum virus F, or PsV-F, a virus that infects the fungus that makes penicillin. PsV-F uses the spherical capsid; although it does not infect humans, it is similar to a rotavirus and others that do.

"Spherical viruses like this have symmetry like a soccer ball or geodesic dome," Pan said. "The whole capsid contains exactly 120 copies of a single protein."

Previous studies had shown that spherical capsids contain dozens of copies of the capsid protein, or CP, in an interlocking arrangement. The new research identified the sphere's basic building block, a four-piece arrangement of CP molecules called a tetramer, which could also be building blocks for other viruses' protein coats. By deciphering both the arrangement and the basic building block, the research team hopes to learn more about the capsid-forming process.

"Because many viruses use this type of capsid, understanding how it forms could lead to new approaches for antiviral therapies," Tao said. "It could also aid researchers who are trying to create designer viruses and other tools that can deliver therapeutic genes into cells."

The research team used X-ray crystallography to decipher the structure of the capsid. Pan first spent several months creating hundreds of crystal samples of PsV-F. He then collected hundreds of high-intensity, high-energy X-ray diffraction images at the Cornell High Energy Synchotron Source, or CHESS, in Ithaca, N.Y. By analyzing the way the X-rays scattered when they struck the crystals, Pan and the team created a precise three-dimensional image of the spherical capsid.

The research team included Rice postdoctoral researcher Li Lin and former graduate student Liping Dong; Max Nibert of Harvard Medical School; Timothy Baker, Wendy Ochoa and Robert Sinkovits, all of the University of California, San Diego; and Said Ghabrial and Wendy Havens, both of the University of Kentucky.

The research was supported by the National Institutes of Health, the USDA, the Welch Foundation, the Kresge Science Initiative Endowment Fund, the Agouron Foundation and the San Diego Supercomputer Center.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Protective Shield Used By Hundreds Of Viruses Deciphered." ScienceDaily. ScienceDaily, 17 February 2009. <www.sciencedaily.com/releases/2009/02/090216175205.htm>.
Rice University. (2009, February 17). Protective Shield Used By Hundreds Of Viruses Deciphered. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/02/090216175205.htm
Rice University. "Protective Shield Used By Hundreds Of Viruses Deciphered." ScienceDaily. www.sciencedaily.com/releases/2009/02/090216175205.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins