Featured Research

from universities, journals, and other organizations

Using Combinatorial Libraries To Engineer Genetic Circuits Advances Synthetic Biology

Date:
April 24, 2009
Source:
Boston University
Summary:
The process of selecting and blending genes to create artificial networks -- synthetic biology -- holds promise for many applications. But developing artificial networks takes time and is often frustrating. A research team has found a way to speed up the construction process by assembling a library of 20 versions of two gene promoters and a simple synthesis technique to create component libraries for synthetic library. This accessible method using combinatorial libraries removes the "tweaking" of gene network engineering.

Streamlining the construction of synthetic gene networks has led a team of Boston University researchers to develop a technique that couples libraries of diversified components with computer modeling to guide predictable gene network construction without the back and forth tweaking.

Related Articles


By applying engineering principles to biological systems where a set of components can evolve into networks that display desired behaviors – known as synthetic biology -- , has led to new opportunities for biofabrication, drug manufacturing -- even potential biofuels.

And while there have been notable successes, the basic process of building and assembling a predictable gene network from bio-molecular parts remains a major challenge that is often frustrating. The time-consuming tweaking phase often requires many months of swapping out different chemical inputs, RNA regulators and promotors before the sought -after network is realized.

In a paper published online this week in Nature Biotechnology, the research team, led by James J. Collins, BU professor of biomedical engineering, focused on ways to speed up the construction process by assembling a library of 20 versions of two gene promotors and a simple synthesis technique to create component libraries for synthetic biology. Each version covered a wide range gene expression. With the activity levels calculated from the component libraries, the scientists turned to a computer model and designed and built a basic gene circuit to predict how fluorescent protein expression varied with levels of promoter-inhibiting chemicals.

Using the same simulation, for the simple gene circuit the researchers went the next step with a genetic timer, a more complicated circuit. However, computer simulation, on its own, was unable to predict the behavior of this timing circuit. They then built a representative genetic timer using a promoter from each of their libraries and, over time, tracked its behavior. Based on information from one network, the research team was able to calibrate their model and achieve accurate predictions from all the other possible network combinations. These timers, the study notes, are effectively genetic toggle switches.

One last test of these genetic timers was to assemble and test one in yeast, which could accurately time yeast sedimentation -- a process that can be applied to biotechnology and some popular brewed beverages.

"The phenotype is crucial in industrial beer, wine and bioethanol fermentation, as it allows for easy removal of yeast sediments after all the sugars have been converted to ethanol," the paper noted.

The researchers concluded that their method using combinatorial libraries to engineer genetic circuits moves the "tweaking" from the back-end of gene network engineering to the front-end.

"Projects undertaken with this approach will help accelerate synthetic biology by yielding many more components for the community," the paper concludes, noting the need for extensive characterization of each component is eliminated or substantially reduced.

"Our work also provides an accessible method for introducing predictable, controlled variability to networks, a feature that is increasingly becoming desirable as synthetic biology enters its second decade."

The research paper, "Diversity-based, Model-Guided Construction of Synthetic Gene Networks with Predicted Functions," was authored by Tom Ellis and Xiao Wang, both post doctoral students at Boston University's Center for BioDynamics and Center for Advanced Biotechnology and Collins.


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ellis et al. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009; DOI: 10.1038/nbt.1536

Cite This Page:

Boston University. "Using Combinatorial Libraries To Engineer Genetic Circuits Advances Synthetic Biology." ScienceDaily. ScienceDaily, 24 April 2009. <www.sciencedaily.com/releases/2009/04/090422121902.htm>.
Boston University. (2009, April 24). Using Combinatorial Libraries To Engineer Genetic Circuits Advances Synthetic Biology. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2009/04/090422121902.htm
Boston University. "Using Combinatorial Libraries To Engineer Genetic Circuits Advances Synthetic Biology." ScienceDaily. www.sciencedaily.com/releases/2009/04/090422121902.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Blue Bell Recalls All Products

Blue Bell Recalls All Products

AP (Apr. 21, 2015) Blue Bell Creameries voluntary recalled for all of its products after two samples of chocolate chip cookie dough ice cream tested positive for listeria, a potentially deadly bacteria. Blue Bell&apos;s President and CEO issued a video statement. (April 21) Video provided by AP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins