Featured Research

from universities, journals, and other organizations

How Cells Function: Missing Target For Calcium Signaling Identified

Date:
April 29, 2009
Source:
Ohio State University Medical Center
Summary:
Researchers can now describe one of the missing triggers that controls calcium inside cells, a process important for muscle contraction, nerve-cell transmission, insulin release and other essential functions. The researchers believe the findings will enhance the understanding of how calcium signals are regulated in cells and shed light on new ways to treat many diseases, including cardiovascular diseases, immune diseases, metabolic diseases, cancer and brain disorders.

An international study led by Ohio State University neuroscience researchers describes one of the missing triggers that controls calcium inside cells, a process important for muscle contraction, nerve-cell transmission, insulin release and other essential functions.

The research is being posted online April 22 in the journal Nature.

The researchers believe the findings will enhance the understanding of how calcium signals are regulated in cells and shed light on new ways to treat many diseases, including cardiovascular diseases, immune diseases, metabolic diseases, cancer, and brain disorders.

The study found that molecular structures called two-pore channels (TPCs) cause the release of calcium when stimulated by a substance called NAADP.

The researchers also show that TPCs are located in the membranes of cell components called lysosomes and endosomes. These are mobile structures within cells that were not previously thought to be sites of calcium release.

Furthermore, the discharge of calcium from these structures can prompt much larger releases from stores located on the large and elaborate membrane network called the endoplasmic reticulum.

"Our study discovered one of the missing targets for calcium signaling," says Michael Xi Zhu, associate professor of neuroscience and a researcher with Ohio State's Center for Molecular Neurobiology. "It also nails down that NAADP receptors are located on lysosomes and endosomes, which should change people's views of calcium signaling.

"It's as if we now understand that cells have not only a primary battery for calcium but other batteries in different places."

Researchers have known for some time that NAADP, or nicotinic acid adenine dinucleotide phosphate, stimulates calcium release inside cells, but there was controversy about how this happened and where this calcium source was located.

Zhu, working with colleagues at the University of Edinburgh, the University of Oxford and UMDNJ-Robert Wood Johnson Medical School in New Jersey, used gene sequence information to discover first that TPC proteins should have the properties of a calcium channel.

The investigators tested their hypothesis in a series of experiments that involved boosting TPC levels – specifically, TPC2 – in a line of laboratory cells. They found that higher TPC2 levels corresponded to higher calcium levels in cells exposed to NAADP.

They used fluorescent antibody labeling to show that the TPC proteins are localized in the membranes of lysosomes and endosomes, which are two types of vesicles in cells. Lysosomes contain enzymes that digest materials and kill bacteria, while endosomes contain materials taken up from the external environment and internalized.

Finally, the researchers found that these NAADP-sensitive stores of calcium are tightly coupled to the larger calcium stores on the endoplasmic reticulum.

This work was supported by grants from the U.K. Wellcome Trust, British Heart Foundation, U.S. National Institutes of Health and American Heart Association.


Story Source:

The above story is based on materials provided by Ohio State University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University Medical Center. "How Cells Function: Missing Target For Calcium Signaling Identified." ScienceDaily. ScienceDaily, 29 April 2009. <www.sciencedaily.com/releases/2009/04/090422132837.htm>.
Ohio State University Medical Center. (2009, April 29). How Cells Function: Missing Target For Calcium Signaling Identified. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/04/090422132837.htm
Ohio State University Medical Center. "How Cells Function: Missing Target For Calcium Signaling Identified." ScienceDaily. www.sciencedaily.com/releases/2009/04/090422132837.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins