Featured Research

from universities, journals, and other organizations

Two-pronged protein attack could be source of SARS virulence

Date:
November 30, 2009
Source:
University of Texas Medical Branch at Galveston
Summary:
Researchers have uncovered what they believe could be the major factor contributing to the SARS virus' virulence: the pathogen's use of a single viral protein to weaken host cell defenses by launching a "two-pronged" attack on cellular protein-synthesis machinery.

Ever since the previously unknown SARS virus emerged from southern China in 2003, University of Texas Medical Branch at Galveston virologists have focused on finding the source of the pathogen's virulence -- its ability to cause disease. In the 2003 epidemic, for example, between 5 and 10 percent of those who fell sick from the SARS virus died, adding up to more than 900 fatalities worldwide.

Now, UTMB researchers have uncovered what they believe could be the major factor contributing to the SARS virus' virulence: the pathogen's use of a single viral protein to weaken host cell defenses by launching a "two-pronged" attack on cellular protein-synthesis machinery.

Their results show that copies of this viral protein, known as nsp1, directly interferes with the tiny cellular machines called ribosomes, which make the proteins, such as interferon beta, that are crucial for immune defense. (If the word "ribosome" sounds familiar, it's probably because the three scientists who first determined what the miniature protein factories look like and how they function won the 2009 Nobel Prize for Chemistry.) Nsp1 is also involved in degrading the biochemical messages that are decoded by these ribosomes to produce such proteins.

"This SARS virus protein, nsp1, binds to ribosomes to inactivate them and also modifies messenger RNA molecules to make them unreadable," said UTMB professor Shinji Makino, senior author of a paper on the discovery appearing in the online edition of Nature Structure and Molecular Biology. "We think that this property of nsp1 could be a major player in the virulence of SARS."

Makino and the article's other authors -- postdoctoral fellows Wataru Kamitani, Cheng Huang and Kumari Lokugamage, and senior research scientist Krishna Narayanan -- identified nsp1's dual effect with a series of experiments mainly done using purified nsp1 protein in a special "cell-free" system. This widely used test-tube platform, known as a "rabbit reticulocyte lysate" (RRL) system, contained only the subcellular structures and materials (ribosomes, amino acids and various control factors) that cells use to produce or "translate" proteins from messenger-RNA templates.

The researchers also developed a mutant form of the nsp1 protein that was incapable of interfering with RNA translation, employing it as an experimental control.

By measuring the outcomes produced by mixing a variety of different messenger-RNA templates with either nsp1 or mutant nsp1 in RRL, the investigators generated a strikingly detailed picture of how nsp1 interferes with ribosomes and degrades messenger RNA. Nsp1 grabs on to ribosomes, attaching to a specific part known as the 40s subunit to shut down protein production Meanwhile, the messenger RNA molecules being translated into proteins on these ribosomes are degraded by processes tied to nsp1.

"This is interesting in part because it's a new mechanism -- no other known protein uses this strategy," Makino said. "But there are more practical reasons why it's important to understand viral virulence factors, particularly when you consider the potential need for treatments. There are viruses similar to SARS circulating in China, and we have no way of knowing whether this virus may come back."

The U.S. Public Health Service and the James W. McLaughlin Foundation supported this work.


Story Source:

The above story is based on materials provided by University of Texas Medical Branch at Galveston. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Medical Branch at Galveston. "Two-pronged protein attack could be source of SARS virulence." ScienceDaily. ScienceDaily, 30 November 2009. <www.sciencedaily.com/releases/2009/10/091029211640.htm>.
University of Texas Medical Branch at Galveston. (2009, November 30). Two-pronged protein attack could be source of SARS virulence. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/10/091029211640.htm
University of Texas Medical Branch at Galveston. "Two-pronged protein attack could be source of SARS virulence." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029211640.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins