Featured Research

from universities, journals, and other organizations

First Synthetic Cellulosome In Yeast Created

Date:
November 2, 2009
Source:
University of California - Riverside
Summary:
Scientist have constructed for the first time a synthetic cellulosome in yeast, which could make the production of bioethanol from biomass more efficient and economical.

A team of researchers led by University of California, Riverside (UCR) Professor of Chemical Engineering Wilfred Chen has constructed for the first time a synthetic cellulosome in yeast, which is much more ethanol-tolerant than the bacteria in which these structures are normally found.

Related Articles


The yeast cellulosome could enable efficient one-step "consolidated bioprocessing" by maximizing the catalytic efficiency of cellulosic hydrolysis with simultaneous fermentation. The process of using these engineered yeasts can potentially make the production of bioethanol from biomass more efficient and economical.

The federal Energy Policy Act mandates the increased production of renewable fuel, such as bioethanol created from biomass. Currently, the most common method of producing bioethanol uses sugar cane and corn starch. Efficient, cost-effective methods of using non-food related materials like cellulosic biomass found in agricultural and wood-pulping wastes is the focus of new research by Chen's team, among others.

The use of multiple enzymes in the cellulosome greatly increases the efficiency of hydrolysis because heterogeneous forms of cellulose can be digested. The artificial cellulosome developed at UCR is highly modular and can be engineered to display ten or more different cellulases, the composition of which can be tuned to optimized hydrolysis of any feedstock.

Cellulosomes are self-assembled structures found on the exterior of certain bacteria that allow the organisms to efficiently break down cellulose. The cellulosome contains multiple types of cellulases (enzymes that break down cellulose), optimally spaced for maximum activity.

The experimental cellulosome contains three different cellulases. Yeast engineered with this triple cellulase cellulosome was able to multiply to high levels with cellulose as the only carbon source. Compared to controls engineered with one or two cellulases, the triple cellulase displaying yeast had higher rates of hydrolysis, demonstrating the benefit of using diverse cellulytic enzymes in a single organism.

The new paper was co-authored by UCR students Shen-Long Tsai and Shailendra Singh, post-doctoral researcher Jeongseok Oh, and Ruizhen Chen, associate professor at the School of Chemical and Biomolecular Engineering at Georgia Institute of Technology.

Ongoing synthetic yeast cellulosome research being done at UCR is funded in part by grants from the National Science Foundation and the Department of Energy.


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tsai et al. Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production. Applied and Environmental Microbiology, 2009; 75 (19): 6087 DOI: 10.1128/AEM.01538-09

Cite This Page:

University of California - Riverside. "First Synthetic Cellulosome In Yeast Created." ScienceDaily. ScienceDaily, 2 November 2009. <www.sciencedaily.com/releases/2009/10/091030095519.htm>.
University of California - Riverside. (2009, November 2). First Synthetic Cellulosome In Yeast Created. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/10/091030095519.htm
University of California - Riverside. "First Synthetic Cellulosome In Yeast Created." ScienceDaily. www.sciencedaily.com/releases/2009/10/091030095519.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

You Won't Be Driving Tesla's Mystery Product

You Won't Be Driving Tesla's Mystery Product

Newsy (Mar. 30, 2015) — Tesla CEO Elon Musk announced a new product line will debut April 30, but it&apos;s not a car. Video provided by Newsy
Powered by NewsLook.com
Solar Impulse Departs Myanmar for China

Solar Impulse Departs Myanmar for China

AFP (Mar. 30, 2015) — Solar Impulse 2 takes off from Myanmar&apos;s second biggest city of Mandalay and heads for China&apos;s Chongqing, the fifth flight of a landmark journey to circumnavigate the globe powered solely by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Colombian Project Transforms Old Tires Into Green Housing

Colombian Project Transforms Old Tires Into Green Housing

AFP (Mar. 30, 2015) — To put a roof over their heads and help the environment, residents near Bogota are building houses out of recycled bottles and old tires. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
The Future Of Japanese Whaling: Heritage Vs. Conservation

The Future Of Japanese Whaling: Heritage Vs. Conservation

Newsy (Mar. 30, 2015) — In 2014, the International Court of Justice ruled Japan could no longer engage in whaling in the Antarctic, but Japan has plans to return this year. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins