Featured Research

from universities, journals, and other organizations

Plant scientist uncovers clues to yield-boosting quirks of corn genome

Date:
November 19, 2009
Source:
University of Minnesota
Summary:
The offspring of two inbred strains tend to be superior to both of their parents. Characterizing the gene-level variability that leads to this phenomenon, known as heterosis or hybrid vigor, could boost our ability to custom-tailor crops for specific traits, such as high protein content for human consumption or high glucose content for biomass fuel.

When it comes to corn, 1 + 1 = more than 2: The offspring of two inbred strains tend to be superior to both of their parents. Characterizing the gene-level variability that leads to this phenomenon, known as heterosis or hybrid vigor, could boost our ability to custom-tailor crops for specific traits, such as high protein content for human consumption or high glucose content for biomass fuel.

Related Articles


With help from the newly released DNA sequence of the common corn strain B73, University of Minnesota plant biologist Nathan Springer and colleagues from Iowa State University, Roche NimbleGen, and the University of Florida have begun doing just that -- and come up with some surprising findings.

In a study reported in the Nov. 20 issues of Science and PLoS Genetics, the researchers compared the genetic sequence of B73 with that of a second inbred strain, Mo17. They discovered an astonishing abundance of two kinds of structural variations between the pair: differences in the copy number of multiple copies of certain stretches of genetic material, and the presence of large chunks of DNA in one but not the other. In fact, at least 180 genes appearing in B73 aren't found in Mo17, and Springer, an associate professor of plant biology in the College of Biological Sciences, suspects that Mo17 likely has a similar number of genes that B73 lacks.

"The genomes of two corn strains are much more different than we would have thought," Springer said. "What struck us is how many major changes there are between two individuals of the same species."

The researchers think that this diversity, which is almost as great as the difference between humans and chimpanzees, is what's behind the superiority of hybrids. When the genetic material from the two very different parents combines, the offspring end up with more expressed traits than either parent -- the best of both worlds, gene-wise.

The findings are important because corn is important. Domesticated some 10,000 years ago, the crop produces billions of bushels of food, feed, and fuel feedstock each year in the United States alone. If we understand the molecular underpinnings of hybrid vigor, Springer says, we can potentially produce true-breeding lines of corn with specific traits for specific uses. That means better use of land, fertilizer, fuel, and other inputs needed to grow crops, and, ultimately, less environmental impact than might otherwise accrue as we work to meet the needs of a growing population.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Cite This Page:

University of Minnesota. "Plant scientist uncovers clues to yield-boosting quirks of corn genome." ScienceDaily. ScienceDaily, 19 November 2009. <www.sciencedaily.com/releases/2009/11/091119141046.htm>.
University of Minnesota. (2009, November 19). Plant scientist uncovers clues to yield-boosting quirks of corn genome. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/11/091119141046.htm
University of Minnesota. "Plant scientist uncovers clues to yield-boosting quirks of corn genome." ScienceDaily. www.sciencedaily.com/releases/2009/11/091119141046.htm (accessed October 26, 2014).

Share This



More Plants & Animals News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins