Featured Research

from universities, journals, and other organizations

Adding one single gene to yeast dramatically improves bioethanol production from agricultural waste

Date:
November 23, 2009
Source:
Delft University of Technology
Summary:
With the introduction of a single bacterial gene into yeast, researchers have achieved three improvements in bioethanol production from agricultural waste material: 'More ethanol, less acetate and elimination of the major by-product glycerol'

With the introduction of a single bacterial gene into yeast, researchers from Delft University of Technology in the Netherlands achieved three improvements in bioethanol production from agricultural waste material: 'More ethanol, less acetate and elimination of the major by-product glycerol' The invention was recently published in the scientific journal Applied and Environmental Microbiology.

Car fuel

Bioethanol is made by the yeast Saccharomyces cerevisiae from sugars obtained from plant biomass. This microorganism also converts such sugars into ethanol (alcohol) in beer and wine. The production of bioethanol is rapidly increasing due to the growing use of bioethanol as a car fuel. With an annual world production of 65 billion liters, bioethanol is aready the largest product of the fermentation industry

Second Generation

Bioethanol should of course preferably be produced from resources that do not compete with food production. For this reason, efforts are made to produce second-generation bioethanol, using agricultural residues such as wheat straw and corn stover. However, when the sugars from these raw materials are released, significant quantities of acetate are formed. Acetate can slow down or even halt bioethanol production by yeast.

Byproduct

Another challenge of the current bioethanol production process is that about 4% of the sugar is lost to formation of the byproduct glycerol. Glycerol formation was long considered to be an inevitable consequence of the production conditions during bioethanol production.

Yeast genes

TU Delft researchers have now solved these issues. Yeast can, at least in theory, also convert the harmful acetate to ethanol. As it turns out, just one single gene is missing in the yeast. By introducing a single gene from the bacterium Escherichia coli, researchers of the Netherlands-based Delft University of Technology and the Kluyver Centre for Genomics of Industrial Fermentation enabled this conversion of acetate to ethanol by yeast. This replaced the normal role of glycerol so efficiently that key genes in glycerol production could be removed, thus completely abolishing glycerol production.

Three-in-one

The invention is enthusiastically summarized by the principal researcher Jack Pronk: 'In the laboratory, this simple genetic modification kills three birds with one stone: no glycerol formation, higher ethanol yields and consumption of toxic acetate'.

For the potential billion liter ethanol gain to be realized, follow-up research on the transfer of this concept to industrial yeast strains and real-life process conditions is required. The Delft yeast researchers, who applied for a patent on their invention, hope to intensively collaborate with industrial partners to accelerate its industrial implementation.


Story Source:

The above story is based on materials provided by Delft University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guadalupe Medina et al. Elimination of glycerol production in anaerobic cultures of Saccharomyces cerevisiae engineered for use of acetic acid as electron acceptor. Applied and Environmental Microbiology, 2009; DOI: 10.1128/AEM.01772-09

Cite This Page:

Delft University of Technology. "Adding one single gene to yeast dramatically improves bioethanol production from agricultural waste." ScienceDaily. ScienceDaily, 23 November 2009. <www.sciencedaily.com/releases/2009/11/091120084617.htm>.
Delft University of Technology. (2009, November 23). Adding one single gene to yeast dramatically improves bioethanol production from agricultural waste. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/11/091120084617.htm
Delft University of Technology. "Adding one single gene to yeast dramatically improves bioethanol production from agricultural waste." ScienceDaily. www.sciencedaily.com/releases/2009/11/091120084617.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins