Featured Research

from universities, journals, and other organizations

Molecular chaperone keeps bacterial proteins from slow-dancing to destruction

Date:
December 29, 2009
Source:
University of Michigan
Summary:
Just like teenagers at a prom, proteins are tended by chaperones whose job it is to prevent unwanted interactions among immature clients. And at the molecular level, just as at the high school gym level, it's a job that usually requires a lot of energy.

Just like teenagers at a prom, proteins are tended by chaperones whose job it is to prevent unwanted interactions among immature clients. And at the molecular level, just as at the high school gym level, it's a job that usually requires a lot of energy.

In new research, scientists at the University of Michigan and Howard Hughes Medical Institute have discovered how a protein chaperone called HdeA, which helps protect bacteria like the notorious Escherichia coli from the ravages of stomach acid, saves energy while keeping proteins from forming destructive clumps.

The research is described in a paper published online in the Proceedings of the National Academy of Sciences.

Proteins in disease-causing bacteria like E. coli unfold when they land in stomach acid after being accidentally ingested by humans and other animals. This unfolding stops the proteins from working and could spell doom for the bacteria if the chaperone HdeA didn't step in. HdeA works by binding very tightly to the unfolded proteins while the bacteria are in the stomach. By attaching to the bacterial proteins, the chaperone stops them from tangling like slow-dancing teens, which could kill the bacteria.

The researchers discovered how HdeA is then able to let go of the unfolded proteins as the bacteria pass into the small intestine so that the proteins refold instead of clumping together.

"HdeA uses a unique timed-release mechanism," said postdoctoral fellow Tim Tapley, who spearheaded the work. "If the proteins were released all at once they would likely clump together, killing the bacteria. What we found instead is that the chaperone HdeA lets go of them gradually, making it more likely that they fold back up into their proper form than clump together."

While most molecular chaperones consume large amounts of cellular energy in order to function, HdeA instead taps energy freely available in its living environment.

"In this way, HdeA is a bit like a wind powered machine, except that instead of harnessing wind, HdeA uses the energy from pH changes in the surrounding environment as the bacteria move from the acid stomach to the slightly alkaline small intestine," said James Bardwell, in whose lab the work was done. Bardwell is a professor of molecular, cellular and developmental biology and of biological chemistry, as well as a Howard Hughes Medical Institute Investigator.

Tapley and Bardwell were assisted by research specialist Sumita Chakraborty, associate professor Ursula Jakob and Titus Franzmann, a postdoctoral fellow in the lab of Stefan Walter. The research was funded in part by the Howard Hughes Medical Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Molecular chaperone keeps bacterial proteins from slow-dancing to destruction." ScienceDaily. ScienceDaily, 29 December 2009. <www.sciencedaily.com/releases/2009/12/091228152342.htm>.
University of Michigan. (2009, December 29). Molecular chaperone keeps bacterial proteins from slow-dancing to destruction. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/12/091228152342.htm
University of Michigan. "Molecular chaperone keeps bacterial proteins from slow-dancing to destruction." ScienceDaily. www.sciencedaily.com/releases/2009/12/091228152342.htm (accessed September 22, 2014).

Share This



More Plants & Animals News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins