Featured Research

from universities, journals, and other organizations

Genetic analyses of influenza in wild birds can improve avian flu surveillance programs

Date:
January 13, 2010
Source:
United States Geological Survey
Summary:
Genetic analyses of avian influenza in wild birds can help pinpoint likely carrier species and geographic hot spots where Eurasian viruses would be most likely to enter North America, according to new research.

Genetic analyses of avian influenza in wild birds can help pinpoint likely carrier species and geographic hot spots where Eurasian viruses would be most likely to enter North America, according to new U.S. Geological Survey research.

Persistence of the highly pathogenic avian influenza H5N1 (HPAI H5N1) virus in Eurasia and Africa, and concerns that the virus might be transported among continents by migratory birds has resulted in global surveillance programs. In the United States, state and federal agencies tested more than 326,000 wild bird samples from across the country from 2005 to 2008.

The new work by USGS has nationwide importance because it offers a method for avian influenza surveillance programs to target their efforts for the right species and in the best locations.

In the study, USGS scientists conducted the first-ever survey of avian influenza gene variation in a single host species -- the northern pintail -- at each end of the bird's migratory flyway in North America: Alaska and California. These birds migrate between North America and Eurasia and in Japan and China have been known to occur in outbreak areas of HPAI H5N1.

The researchers discovered that some avian influenza viruses recovered from the North American pintails contain genes that are more closely related to influenza viruses in Eurasia, and that the greatest number of these genes occurred in pintail viruses from Alaska. In contrast, northern pintails sampled on their main wintering areas in California had few Eurasian virus genes.

The researchers speculate that Euasian flu genes become less prevalent as birds migrate southward in fall due to rapid mutation and reassortment, common to influenza viruses, and dilution by existing North American flu viruses. Reassortment, a shuffling process among viruses that infect the same host, occurs in all types of influenza A viruses, including H1N1 and H5N1.

"Our research demonstrates a genetically based technique for prioritizing wild bird species that are targeted for surveillance," said Dr. John Pearce, a USGS scientist and lead author of the study. "Refining the list of priority species for surveillance by this method can reduce time and effort involved in surveillance sampling and is needed not only for Alaska, but also for those species along the North

Atlantic coast of North America that may engage in transcontinental migrations, such as shorebirds and gulls," Pearce said.

With few exceptions, genetic evidence for transcontinental avian influenza virus exchange in North America has come from coastal regions closest to Europe or Asia -- Alaska and the North Atlantic.

These areas, said Pearce, probably represent the first or primary areas of contact for foreign viruses, yet only about a third of birds tested for HPAI H5N1 in the United States so far have been from these regions.

"Based on this new genetic evidence, one possible new strategy would be to target surveillance efforts on species in these coastal regions that are geographically closer to current sources of the highly pathogenic H5N1 virus," Pearce said. "If there is no evidence of transcontinental avian influenza virus gene exchange for a certain species or regional pathway, then those species and areas could be deemphasized in future surveillance programs."

The research was published in the November 2009 issue of Evolutionary Applications, and was authored by scientists from three USGS centers: the USGS Alaska Science Center, the USGS National Wildlife Health Center, and the USGS Western Ecological Research Center.


Story Source:

The above story is based on materials provided by United States Geological Survey. Note: Materials may be edited for content and length.


Cite This Page:

United States Geological Survey. "Genetic analyses of influenza in wild birds can improve avian flu surveillance programs." ScienceDaily. ScienceDaily, 13 January 2010. <www.sciencedaily.com/releases/2010/01/100112123644.htm>.
United States Geological Survey. (2010, January 13). Genetic analyses of influenza in wild birds can improve avian flu surveillance programs. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/01/100112123644.htm
United States Geological Survey. "Genetic analyses of influenza in wild birds can improve avian flu surveillance programs." ScienceDaily. www.sciencedaily.com/releases/2010/01/100112123644.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins