Featured Research

from universities, journals, and other organizations

Cell-cell interactions adapt to the stiffness of the environment

Date:
February 21, 2010
Source:
Cell Press
Summary:
The ability of tissue cells to stick to one another is critical for many physiological and pathological processes. Now, a new study provides intriguing insight into how mechanical interaction with the external environment influences cell shape and the forces generated by a cell's internal "skeleton."

The ability of tissue cells to stick to one another is critical for many physiological and pathological processes. But normal living cells need to do much more than just hold on tight, they must monitor their environment and respond with appropriate changes in shape, migration, and proliferation.

Related Articles


Now, a new study published online on February 16th in the Biophysical Journal provides intriguing insight into how mechanical interaction with the external environment influences cell shape and the forces generated by a cell's internal "skeleton."

Cadherins are cell membrane proteins that regulate cell-cell connections by establishing a direct link between a cadherin molecule in an adjacent cell and the cells own internal scaffolding, called the cytoskeleton. "Cadherin-based intercellular junctions are the major means for force transmission within tissues," explains study author Dr. Benoit Ladoux from Paris Diderot University in Paris, France. "A better understanding of how mechanical forces and cellular tension influence formation of cadherin junctions might help to explain how normal tissue integrity is maintained and what promotes cancer metastasis."

Earlier studies had examined cells growing on cadherin-coated glass surfaces. However, there is no biological equivalent with the rigidity of glass in any tissue of the body. In order to gain a better insight into how cadherins function in under more physiological conditions, Dr. Ladoux, Dr. Rene Mège and their colleagues measured the response of cells grown on cadherin-coated substrates with a range of rigidities corresponding to the different stiffnesses that cells encounter in their natural tissue microenvironments.

The researchers found that cells cultured on softer surfaces were less spread out and had a more disorganized cytoskeleton when compared with cells growing on more rigid surfaces. "The stiffer the substrates, the larger the average traction forces and the more developed the cadherin adhesions were," reports Dr. Mège. Inhibition of myosin II, a key cytoskeletal component, decreased traction forces and caused cadherin adhesions to disappear, suggesting that the cytoskeleton was necessary to sustain cellular traction forces.

"Taken together, our results indicate that the strength of cadherin adhesions depends on both intrinsic tension and the stiffness of the environment, and that cadherin adhesions possess some kind of force sensing mechanism to adapt their strength to the rigidity of the of the intracellular and extracellular environments," concludes Dr. Ladoux. "The remodeling of cell junctions to exert appropriate forces could be particularly significant during embryogenesis, tissue integrity, or tumor metastasis."

Researchers include: Dr. Benoit Ladoux, at CNRS UMR 7057, Université Paris Diderot, in Paris, France, and René Marc Mège, at UMRS 839 INSERM / Université Pierre et Marie Curie, Institut du Fer à Moulin, in Paris, France.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Cell-cell interactions adapt to the stiffness of the environment." ScienceDaily. ScienceDaily, 21 February 2010. <www.sciencedaily.com/releases/2010/02/100216140144.htm>.
Cell Press. (2010, February 21). Cell-cell interactions adapt to the stiffness of the environment. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2010/02/100216140144.htm
Cell Press. "Cell-cell interactions adapt to the stiffness of the environment." ScienceDaily. www.sciencedaily.com/releases/2010/02/100216140144.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins