Featured Research

from universities, journals, and other organizations

Biogenic insecticides decoded

Date:
March 6, 2010
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Researchers have discovered a new mode of action of insecticidal toxins from Photorhabdus luminescens, a bacterium which lives in a symbiotic relationship with nematodes. The tiny worms enter insect larvae through natural openings, where they proceed to "cough up" the bacteria. Bacterial toxins produced by the light-emitting bacteria kill the insect larvae, thus creating a larger reservoir of nourishment for the proliferation of nematodes and bacteria. For this reason, the worms and their bacteria are often used as biogenic insecticides.

Galleria mellonella (greater wax moth) infected with Photorhabdus luminescens. (A) Larvae of the greater wax moth after infection with P. luminescens, left, not infected; middle, after 24 hours; right, after 48 hours. (B) Bioluminescence of P. luminescens. After infecting the insect larvae, P. luminescens begins to glow. (C–F) Effect of P. luminescens toxins on isolated primary blood cells (hemocytes) of Galleria mellonella. Control cells (C), treated with TccC3 (D), TccC5 (E), and TccC3 + TccC5 (F). The two toxins destroy the cytoskeleton of target cells.
Credit: Photos copyright Alexander E. Lang

In the latest issue of Science, researchers from the University of Freiburg report on their discovery of a new mode of action of insecticidal toxins from Photorhabdus luminescens, a bacterium which lives in a symbiotic relationship with nematodes.

The tiny worms enter insect larvae through natural openings, where they proceed to "cough up" the bacteria, so to speak. Bacterial toxins produced by the light-emitting bacteria kill the insect larvae (see photo), thus creating a larger reservoir of nourishment for the proliferation of nematodes and bacteria. For this reason, the worms and their bacteria are often used as biogenic insecticides.

Photorhabdus luminescens produces various toxins which form large toxin complexes (Tc proteins). The biologically active complex consists of the three components TcA, TcB, and TcC. Until now, scientists have not succeeded in describing the enzymatic activity or the mode of action of these toxins.

A team of researchers at the University of Freiburg led by Prof. Dr. Dr. Klaus Aktories and Prof. Dr. Gudula Schmidt investigated the effects of the toxins on insect and mammal cells together with researchers from the company Dow AgroSciences (USA) and Prof. Dr. Hans Georg Mannherz (University of Bochum and Max Planck Institute for Molecular Physiology in Dortmund). They were able to demonstrate that the biological activity is localized in the TcC components TccC3 and TccC5.

The two toxin components are enzymes which inhibit essential defense mechanisms of immune cells, such as the intake and elimination of bacteria. The toxins act on the target cells of the insect larvae in two different ways: TccC3 modifies the cytoskeleton protein actin directly at the amino acid threonine-148 by adding ADP-ribose. This leads to the elimination of a regulator of actin (thymosin-β4), resulting in a greatly increased polymerization of the cytoskeleton. The second toxin, TccC5, effects changes in Rho proteins, the switching proteins for the regulation of the actin cytoskeleton. These regulators are switched on and off again in the cell. TccC5 modifies the switch at the amino acid glutamine-63, also by adding ADP-ribose, and prevents it from being switched off. The permanently active Rho protein then promotes the polymerization of actin.

Together, the two toxins lead to a strong aggregation and cluster building in the actin cytoskeleton which is incompatible with normal cellular function and immune defense. In order to enter the insect cells, the toxins TccC3 and TccC5 need TcA as it builds the pores in the host cells they likely use to penetrate into the inside of the cell.

Tc proteins have also been identified in human pathogenic bacteria such as Yersinia pseudotuberculosis and Yersinia pestis. A full explanation of the molecular mechanisms of the prototypical tc proteins is thus of paramount importance for reaching an understanding of other tc proteins from insecticides and human pathogenic bacteria.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander E. Lang, Gudula Schmidt, Andreas Schlosser, Timothy D. Hey, Ignacio M. Larrinua, Joel J. Sheets, Hans G. Mannherz, and Klaus Aktories. Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering. Science, 2010; 327 (5969): 1139 DOI: 10.1126/science.1184557

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Biogenic insecticides decoded." ScienceDaily. ScienceDaily, 6 March 2010. <www.sciencedaily.com/releases/2010/03/100301163657.htm>.
Albert-Ludwigs-Universität Freiburg. (2010, March 6). Biogenic insecticides decoded. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2010/03/100301163657.htm
Albert-Ludwigs-Universität Freiburg. "Biogenic insecticides decoded." ScienceDaily. www.sciencedaily.com/releases/2010/03/100301163657.htm (accessed August 29, 2014).

Share This




More Plants & Animals News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) — Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins