Featured Research

from universities, journals, and other organizations

Second dose of gene therapy for inherited blindness proves safe in animal studies

Date:
March 4, 2010
Source:
University of Pennsylvania School of Medicine
Summary:
A research team that conducted the gene therapy trial for an inherited blindness reports that a study in animals has shown that a second injection of genes into the opposite, previously untreated eye is safe and effective, with no signs of interference from unwanted immune reactions following the earlier injection. These new findings suggest that patients who benefit from gene therapy in one eye may experience similar benefits from treatment in the other eye.

This is a canine retina two years post-injection. Retinal photograph taken more than two years after subretinal injection of AAV2-hRPE65v2 in the second eye of a dog model of Leber's congenital amaurosis due to RPE65 mutations. The AAV-exposed portion of the retina, with the overlying inner retinal blood vessels, appears yellow due to reflective changes in the underlying tapetum.
Credit: Daniel Chung, PhD, University of Pennsylvania School of Medicine; Science Translational Medicine

Gene therapy for a severe inherited blindness, which produced dramatic improvements last year in 12 children and young adults who received the treatment in a clinical trial, has cleared another hurdle. The same research team that conducted the human trial now reports that a study in animals has shown that a second injection of genes into the opposite, previously untreated eye is safe and effective, with no signs of interference from unwanted immune reactions following the earlier injection.

Related Articles


These new findings suggest that patients who benefit from gene therapy in one eye may experience similar benefits from treatment in the other eye for Leber's congenital amaurosis (LCA), a retinal disease that progresses to total blindness by adulthood. Researchers had exercised caution by treating only one eye in the human trial.

In the current study, the study team found no evidence of toxic side effects in the blood or the eyes of the 10 animals -- six dogs and four monkeys -- that received the gene therapy. Each animal received an injection first in the right eye, then in the left eye 14 days later. All six dogs, which had been specially bred to have congenital blindness, had improved vision, in addition to showing no toxic effects from the gene therapy.

Researchers from the University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, and colleagues from two other institutions published their study March 3 in the journal Science Translational Medicine. The first authors are Defne Amado, of the F.M. Kirby Center for Molecular Ophthalmology at Penn, and Federico Mingozzi, Ph.D., of the Center for Cellular and Molecular Therapeutics at Children's Hospital.

"We designed this study to investigate the immunological consequences of administering the gene therapy injection to the second eye after treating the first one," said corresponding author Jean Bennett, M.D., Ph.D., F.M. Kirby professor of Ophthalmology at Penn. "The good news is that in animals, the second injection, like the first, is benign."

As in the human trials of this gene therapy, the researchers packaged a normal version of the gene that is missing in LCA inside a genetically engineered vector, adeno-associated virus (AAV). The vector delivers the gene to cells in the retina, where the gene produces an enzyme that restores light receptors. Although the virus used does not cause human disease, it previously set off an immune response that cut short the initial benefits of gene therapy, notably in a 2002 human trial of gene therapy for the bleeding disorder hemophilia.

"Our current study in large animals provides encouraging indications that immune responses will not interfere with human gene therapy in both eyes," said co-author Katherine A. High, M.D., a pioneer in gene therapy who helped lead the hemophilia trial. "Like humans, monkeys generate neutralizing antibodies against both naturally occurring and injected AAV, but these antibodies did not prevent the injected gene from producing the desired enzyme." High is director of the Center for Cellular and Molecular Therapeutics (CCMT) at Children's Hospital, which manufactured the vector used in the current study and the previous human trial for LCA.

In the human trial for LCA reported last year, the CHOP/Penn researchers, led by Bennett, High and retina specialist Albert M. Maguire, M.D., associate professor of Opthalmology at Penn, injected the vector into only one eye in each of their 12 patients. Because the treatment was experimental, researchers left one eye untreated in the event of unexpected complications. After the subjects experienced partially restored eyesight in their treated eyes, many were eager to receive the same treatment in the other eye. The current study advances that possibility, and the research team is planning another clinical trial of LCA gene therapy, which may include some of the subjects from the first group.

Additionally, the results may set the stage for gene therapy in LCA patients who were excluded from the previous trial. Adopting a conservative approach, the researchers did not treat patients who already had neutralizing antibodies against AAV in their blood. As many as a quarter of all people may carry these antibodies by their teenage and young adult years. Fortunately, unlike other organs, both human and animal eyes are insulated from these circulating antibodies. (Co-author Stephen Orlin, M.D., of Penn's Scheie Eye Institute, led studies of human samples and showed that even when antibodies to AAV were at high levels in the blood, antibodies within the eye remained at or near background levels). The authors conclude that the presence of those antibodies in the blood will most likely not prevent effective gene transfer in human eyes.

Funding support came from the CCMT, the Foundation Fighting Blindness sponsored CHOP-PENN Pediatric Center for Retinal Degenerations, the National Institutes of Health, Research to Prevent Blindness, Hope for Vision, the Paul and Evanina Mackall Foundation Trust at the Scheie Eye Institute, and the F.M. Kirby Foundation. Dr. High is an Investigator of the Howard Hughes Medical Institute, which also provided support.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Second dose of gene therapy for inherited blindness proves safe in animal studies." ScienceDaily. ScienceDaily, 4 March 2010. <www.sciencedaily.com/releases/2010/03/100303141930.htm>.
University of Pennsylvania School of Medicine. (2010, March 4). Second dose of gene therapy for inherited blindness proves safe in animal studies. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/03/100303141930.htm
University of Pennsylvania School of Medicine. "Second dose of gene therapy for inherited blindness proves safe in animal studies." ScienceDaily. www.sciencedaily.com/releases/2010/03/100303141930.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins