Featured Research

from universities, journals, and other organizations

New defenses deployed against plant diseases

Date:
April 23, 2010
Source:
Norwich BioScience Institutes
Summary:
Researchers have transferred broad spectrum resistance against some important plant diseases across different plant families. The breakthrough provides a new way to produce crops with sustainable resistance to economically important diseases.

An international team led by scientists at the Sainsbury Laboratory in Norwich,UK, have transferred broad spectrum resistance against some important plant diseases across different plant families. This breakthrough provides a new way to produce crops with sustainable resistance to economically important diseases.

Food insecurity is driving the search for ways to increase the amount of food we grow, whilst at the same time reducing unsustainable agricultural inputs. One way to do this is to increase the innate ability of crops to fight off disease-causing pathogens. Increased disease resistance would reduce yield losses as well as reduce the need for pesticide spraying.

Breeding programs for resistance generally rely on single resistance genes that recognise molecules specific to particular strain of pathogens. Hence this kind of resistance rarely confers broad-spectrum resistance and is often rapidly overcome by the pathogen evolving to avoid recognition by the plant.

However, plants have another defence system, based on pattern recognition receptors (PRRs). PRRs recognise molecules that are essential for pathogen survival. These molecules are less likely to mutate without harming the pathogen's survival, making resistance to them more durable in the field. These essential molecules are common to many different microbes, meaning that if a plant recognises and can defend itself against one of these molecular patterns, it is likely to be resistant against a broad range of other pathogens.

Very few of these PRRs have been identified to date. Dr Cyril Zipfel and his group at the Sainsbury Laboratory in Norwich, UK, took a Brassica-specific PRR that recognises bacteria, and transformed it into the Solanaceae plants Nicotania benthaminia and tomato.

"We hypothesised that adding new recognition receptors to the host arsenal could lead to enhanced resistance," said Dr Zipfel.

Under controlled laboratory conditions, they tested these transformed plants against a variety of different plant pathogens, and found drastically enhanced resistance against many different bacteria, including some of great importance to modern agriculture such as Rastonia solanaceraum, the causal agent of bacterial wilt and a select agent in the United States under the Agricultural Bioterrorism Protection Act of 2002.

"The strength of this resistance is because it has come from a different plant family, which the pathogen has not had any chance to adapt to. Through genetic modification, we can now transfer this resistance across plant species boundaries in a way traditional breeding cannot," said Dr Zipfel.

Published in the journal Nature Biotechnology, the finding, that plant recognition receptors can be successfully transferred from one plant family to another provides a new biotechnological solution to engineering disease resistance. The Zipfel group is currently extending this work to other crops including potato, apple, cassava and banana that all suffer from important bacterial diseases, particularly in the developing world.

"A guiding principle in plant pathology is that most plants tend to be resistant to most pathogens. Cyril's work indicates that transfer of genes that contribute to this basic innate immunity from one plant to another can enhance pathogen resistance," commented Professor Sophien Kamoun, Head of the Sainsbury Laboratory. "The implications for engineering crop plants with enhanced resistance to infectious diseases are very promising."

This research was funded by the Gatsby Charitable Foundation and the Two Blades Foundation, who have patented the technology on behalf of the inventors, and involved research groups from INRA/CNRS in France, the University of California, Berkeley and Wageningen University in the Netherlands.


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zipfel et al. Inter-family transfer of a plant pattern recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 2010; DOI: 10.1038/nbt.1613

Cite This Page:

Norwich BioScience Institutes. "New defenses deployed against plant diseases." ScienceDaily. ScienceDaily, 23 April 2010. <www.sciencedaily.com/releases/2010/03/100314150912.htm>.
Norwich BioScience Institutes. (2010, April 23). New defenses deployed against plant diseases. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/03/100314150912.htm
Norwich BioScience Institutes. "New defenses deployed against plant diseases." ScienceDaily. www.sciencedaily.com/releases/2010/03/100314150912.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

AP (Oct. 17, 2014) Two white lion cubs were born in Belgrade zoo three weeks ago. White lions are a rare mutation of a species found in South Africa and some cultures consider them divine. (Oct. 17) Video provided by AP
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
Sweet Times for Hard Cider Makers

Sweet Times for Hard Cider Makers

AP (Oct. 16, 2014) With hard cider making a hardcore comeback across the country, craft makers are trying to keep up with demand and apple growers are tapping a juicy new revenue stream. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Meet Garfi the Angry Cat

Meet Garfi the Angry Cat

Buzz60 (Oct. 16, 2014) Garfi is one frowny, feisty feline - downright angry! Ko Im (@koimtv) introduces us to the latest animal celebrity taking over the Internet. You can follow more of Garfi's adventures on Twitter (@MeetGarfi) and Facebook (Garfi). Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins