Featured Research

from universities, journals, and other organizations

Estimating ethanol yields from Conservation Reserve Program croplands

Date:
March 19, 2010
Source:
USDA/ Agricultural Research Service
Summary:
The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a new study indicates that plant species diversity and composition are key factors in potential energy yield per acre from biomass harvested from CRP land.

Native tall prairie grass species such as switchgrass, big bluestem, and indiangrass are key to increasing the potential bioenergy yield from land in the Conservation Reserve Program.
Credit: Photo courtesy of Scott Singer, NRCS.

The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a study by Agricultural Research Service (ARS) scientists indicates that plant species diversity and composition are key factors in potential energy yield per acre from biomass harvested from CRP land.

Related Articles


Agronomist Paul Adler, who works at the ARS Pasture Systems and Watershed Management Research Unit in University Park, Pa., led this research. Collaborators included University Park agronomist Matt Sanderson; microbiologist Paul Weimer, who works at the ARS U.S. Dairy Forage Research Center in Madison, Wis.; and plant geneticist Kenneth Vogel, who works at the ARS Grain, Forage and Bioenergy Research Unit in Lincoln, Neb.

The team studied plant species composition, species diversity, aboveground biomass, plant chemical composition and potential ethanol yield at 34 warm-season grassland sites across the major ecological regions of the northeastern United States. The sites were a mix of CRP holdings, wildlife refuges, state parks and other public and private lands. The researchers identified 285 plant species, most of them native, on the study sites. Switchgrass, big bluestem and indiangrass, which are all tall native prairie grasses, dominated the vegetation mix. There was an average of 34 different plant species per quarter-acre.

CRP grasslands with the highest number of species had the lowest potential ethanol yields per acre. But sites dominated by a small number of native tall prairie grass species, such as switchgrass, big bluestem, and indiangrass, had the highest yields.

The results from this study demonstrated that the species composition of plant mixtures used in low-input, high-diversity systems affects both biomass production and chemical composition of the resulting feedstock. Including a large number of species with undesirable fermentation characteristics could reduce ethanol yields.

This extensive study also shows that CRP lands in the northeastern United States with a high proportion of tall native prairie grasses have the potential to produce more than 600 gallons of ethanol per acre. This energy can be produced while maintaining the ecological benefits of CRP grasslands.

Results from this study were published in the journal Ecological Applications.


Story Source:

The above story is based on materials provided by USDA/ Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA/ Agricultural Research Service. "Estimating ethanol yields from Conservation Reserve Program croplands." ScienceDaily. ScienceDaily, 19 March 2010. <www.sciencedaily.com/releases/2010/03/100319115640.htm>.
USDA/ Agricultural Research Service. (2010, March 19). Estimating ethanol yields from Conservation Reserve Program croplands. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/03/100319115640.htm
USDA/ Agricultural Research Service. "Estimating ethanol yields from Conservation Reserve Program croplands." ScienceDaily. www.sciencedaily.com/releases/2010/03/100319115640.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins