Featured Research

from universities, journals, and other organizations

Bringing dehydrated plants 'back to life': Possible key to desiccation-tolerant plants

Date:
April 5, 2010
Source:
American Journal of Botany
Summary:
Drought can take a toll on plants and animals alike. When cells are deprived of water, they shrink, collapsing in upon themselves and, without water as a medium, chemicals and enzymes inside the cells may malfunction. However, some plants, like the aptly named "resurrection fern," can survive extreme measures of water loss, even as much as 95 percent of their water content. How do the cells in these desiccation-tolerant plants remain viable?

Pleopeltis polypodioides.
Credit: Courtesy of Wikimedia Commons

Drought can take a serious toll on plants and animals alike. When cells are deprived of water, they shrink, collapsing in upon themselves and, without water as a medium, chemicals and enzymes inside the cells may malfunction. However, some plants, like the aptly named "resurrection fern" (Polypodium polypodioides), can survive extreme measures of water loss, even as much as 95% of their water content. How do the cells in these desiccation-tolerant plants remain viable?

The collaboration between Ronald Balsamo, Associate Professor of Biology at Villanova University and Bradley Layton, Associate Professor of Mechanical Engineering and Mechanics at Drexel University, began in Balsamo's front yard one evening when the two of them were discussing the possible role that biomechanics plays in drought resistance. Balsamo had been conducting plant biomechanics at the tissue and organism scale, pulling apart leaves and stalks of plants with differing abilities to survive drought, while Layton had been spending his time primarily investigating single cells and modeling single proteins such as collagen and tubulin.

As they talked, it became apparent that any differences between plants of related species that give some individuals the ability to survive very low water levels, while their cousins die after only moderate water loss, must be occurring at the cellular and molecular level. They began their studies with the "resurrection fern," and these results can be found in the April issue of the American Journal of Botany by Layton and colleagues.

"The plant is just as dry and brittle as can be," Balsamo said. "It has lost 95% of its water, but it's still alive! Imagine this happening to a human. Most of us wouldn't make it past 10% or 20%." Unfortunately, this is also true of many agricultural crops. Maize, for example, can only tolerate a water loss of about 20% to 30% before dying.

To begin answering the question of how the resurrection fern does it, Balsamo, Layton, and colleagues began a multi-pronged approach using western blotting, a technique that can detect relative levels of different proteins over a time; immunolocalization, a technique that can "light up" spatial regions of plant tissue where a particular protein may be lurking; and atomic force microscopy, a powerful microscopy technique that can resolve individual proteins and sometimes individual atoms.

What they found was novel and a bit controversial. They found that not only is a particular class of proteins, called dehydrins, more prevalent during dry conditions, but, for the first time, they found that it was also prevalent near the cell walls. Dehydrins earned their name for their ability to attract, sequester, and localize water. They behave this way because of their negative charge.

The finding led the researchers to the conclusion that these water-surrounded dehydrins may actually allow water to act as a lubricant between either the plant cell membrane and the plant cell wall or even between individual cell wall layers. "This is important from a mechanics perspective because these cells are really undergoing some major deformation as they dry," Balsamo said.

Layton added, "Think of crumpling a sheet of paper over and over. Eventually the fibers are going to fracture and the paper is going to tear. This means certain death for a plant cell, which relies on the mechanical integrity of its cell wall to survive."

They also observed that the fern's vascular tissue, found near the centers of individual fronds does not deform greatly, highlighting the importance of keeping this tissue intact once water again becomes available. If the dehydrin gene could be localized and transferred to other species, it could possibly confer the ability to resist drought to plants. The researchers are currently investigating similar hypotheses as they relate to other U.S. agricultural crops using their seed funding from the USDA and their recently awarded NSF grant to study the biomechanics of Arabidopsis thaliana leaves being supplied form the Ohio State University Arabidopsis Biological Resource Center.


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. E. Layton, M. B. Boyd, M. S. Tripepi, B. M. Bitonti, M. N. R. Dollahon, R. A. Balsamo. Dehydration-induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. American Journal of Botany, 2010; 97 (4): 535 DOI: 10.3732/ajb.0900285

Cite This Page:

American Journal of Botany. "Bringing dehydrated plants 'back to life': Possible key to desiccation-tolerant plants." ScienceDaily. ScienceDaily, 5 April 2010. <www.sciencedaily.com/releases/2010/04/100401101053.htm>.
American Journal of Botany. (2010, April 5). Bringing dehydrated plants 'back to life': Possible key to desiccation-tolerant plants. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/04/100401101053.htm
American Journal of Botany. "Bringing dehydrated plants 'back to life': Possible key to desiccation-tolerant plants." ScienceDaily. www.sciencedaily.com/releases/2010/04/100401101053.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins