Featured Research

from universities, journals, and other organizations

You had me at hello: Frisky yeast know who to 'shmoo' after two minutes

Date:
April 19, 2010
Source:
Imperial College London
Summary:
Yeast cells decide whether to have sex with each other within two minutes of meeting, according to new research. One of the authors of the study says the new insights into how yeast cells decide to mate could be helpful for researchers looking at how cancer cells and stem cells develop.

Yeast cells decide whether to have sex with each other within two minutes of meeting, according to new research published April 18 in Nature. One of the authors of the study, from Imperial College London, says the new insights into how yeast cells decide to mate could be helpful for researchers looking at how cancer cells and stem cells develop.

Yeasts are single-celled microbes that scientists often use as model organisms, to help them understand how cells work. They usually reproduce asexually, by a process called budding, where a part of the cell is pinched off and becomes a new cell, identical to the original.

Sometimes, yeast cells reproduce sexually, by mating. The mating process involves one cell of each sex joining together, then mixing their DNA and splitting apart again. To do this, the cells each have to produce a nodule that they can join together, called a shmoo. The process of shmooing takes around two hours.

In the new study, researchers from Imperial College London, Université de Montréal, McGill University and the University of Edinburgh determined that a yeast cell's decision to mate is controlled by a chemical change on a single protein. This change occurs two minutes after the cell detects a pheromone produced by the opposite sex, meaning that the decision to mate occurs much more quickly than scientists previously thought.

The researchers also found that in order for the mating process to be switched on, the pheromone must reach a critical concentration in the environment around the yeast cell. Below this concentration, the yeast cell continues to reproduce asexually.

"Shmooing is a very energy-intensive process for yeast cells. We think this switching process at a certain pheromone concentration may have evolved to make sure the cells only get prepared for sexual reproduction if a mate is sufficiently close enough and able to mate," said Dr Vahid Shahrezaei, one of the authors of the study from the Department of Mathematics at Imperial College London.

The researchers used a highly complex mathematical model to determine what switches the mating process on and off, factoring in experimental data about the concentration of pheromones around the cell, the concentrations of different proteins relevant to mating inside the cell and how strongly these proteins bind together.

They believe their mathematical model can potentially be used to investigate the triggers that cause changes in other cells, such as stem cells becoming heart or bone cells, or normal cells becoming cancerous. This is because mammalian cells and yeast cells contain many of the same proteins, which work together in a chain reaction to trigger a decision in the cell. Therefore, this new model could ultimately help researchers to develop new drugs and therapies.

Dr Shahrezaei said: "Yeast cells live in a very noisy environment -- they are surrounded by different chemicals, including pheromones and food, and their own machinery inside the cell produces lots of biomolecules that interact with each other. We wanted to see how cells make sense of this noisy environment and work out what is happening, at a molecular level, to make a important decision like mating.

"By combining experiments and mathematical modelling that take lots of different factors into consideration, we have been able to show exactly what is happening inside a yeast cell to make it decide whether to mate with another cell. We also showed that the mechanism that leads the cells to make their decision is very robust, meaning it is not affected by molecular noise in the environment," added Dr Shahrezaei.

"Although yeast is dramatically different from people, at a molecular and cellular level we have a lot in common," said senior author Dr Stephen Michnick, a Université de Montréal biochemistry professor and Canada Research Chair in Integrative Genomics. "The same molecules that create the switching decision in yeast are found in very similar forms in human cells. Similar switching decisions to those made by yeast are made by stem cells during embryonic development and become dysfunctional in cancers."


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Malleshaiah et al. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature, 2010; DOI: 10.1038/nature08946

Cite This Page:

Imperial College London. "You had me at hello: Frisky yeast know who to 'shmoo' after two minutes." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100418155444.htm>.
Imperial College London. (2010, April 19). You had me at hello: Frisky yeast know who to 'shmoo' after two minutes. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/04/100418155444.htm
Imperial College London. "You had me at hello: Frisky yeast know who to 'shmoo' after two minutes." ScienceDaily. www.sciencedaily.com/releases/2010/04/100418155444.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) — River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) — Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins