Featured Research

from universities, journals, and other organizations

Soil microbes produce less atmospheric CO2 than expected with climate warming

Date:
April 27, 2010
Source:
University of California - Irvine
Summary:
The physiology of microbes living underground could determine the amount of carbon dioxide emitted from soil on a warmer Earth, according to a new study.

Fungi such as this Laccaria species in Alaskan boreal forest are key drivers of the carbon cycle.
Credit: Photo by Steve Allison / UC Irvine

The physiology of microbes living underground could determine the amount of carbon dioxide emitted from soil on a warmer Earth, according to a study recently published online in Nature Geoscience.

Related Articles


Researchers at UC Irvine, Colorado State University and the Yale School of Forestry & Environmental Studies found that as global temperatures increase, microbes in soil become less efficient over time at converting carbon in soil into carbon dioxide, a key contributor to climate warming.

Microbes, in the form of bacteria and fungi, use carbon for energy to breathe, or respire, and to grow in size and in number. A model developed by the researchers shows microbes exhaling carbon dioxide furiously for a short period of time in a warmer environment, leaving less carbon to grow on. As warmer temperatures are maintained, the less efficient use of carbon by the microbes causes them to decrease in number, eventually resulting in less carbon dioxide being emitted into the atmosphere.

"Microbes aren't the destructive agents of global warming that scientists had previously believed," said Steven Allison, assistant professor of ecology & evolutionary biology at UCI and lead author on the study. "Microbes function like humans: They take in carbon-based fuel and breathe out carbon dioxide. They are the engines that drive carbon cycling in soil. In a balanced environment, plants store carbon in the soil and microbes use that carbon to grow. The microbes then produce enzymes that convert soil carbon into atmospheric carbon dioxide."

The study, "Soil-Carbon Response to Warming Dependent on Microbial Physiology," contradicts the results of older models that assume microbes will continue to spew ever-increasing amounts of carbon dioxide into the atmosphere as the climate continues to warm. The new simulations suggest that if microbial efficiency declines in a warmer world, carbon dioxide emissions will fall back to pre-warming levels, a pattern seen in field experiments. But if microbes manage to adapt to the warmth -- for instance, through increased enzyme activity -- emissions could intensify.

"When we developed a model based on the actual biology of soil microbes, we found that soil carbon may not be lost to the atmosphere as the climate warms," said Matthew Wallenstein of the Natural Resource Ecology Laboratory at Colorado State University. "Conventional ecosystem models that didn't include enzymes did not make the same predictions."

Mark Bradford, assistant professor of terrestrial ecosystem ecology at Yale, said there is intense debate in the scientific community over whether the loss of soil carbon will contribute to global warming. "The challenge we have in predicting this is that the microbial processes causing this loss are poorly understood," he said. "More research in this area will help reduce uncertainties in climate prediction."


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steven D. Allison, Matthew D. Wallenstein, Mark A. Bradford. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 2010; DOI: 10.1038/ngeo846

Cite This Page:

University of California - Irvine. "Soil microbes produce less atmospheric CO2 than expected with climate warming." ScienceDaily. ScienceDaily, 27 April 2010. <www.sciencedaily.com/releases/2010/04/100426131612.htm>.
University of California - Irvine. (2010, April 27). Soil microbes produce less atmospheric CO2 than expected with climate warming. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2010/04/100426131612.htm
University of California - Irvine. "Soil microbes produce less atmospheric CO2 than expected with climate warming." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426131612.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins