Featured Research

from universities, journals, and other organizations

Gene discovery may lead to new varieties of soybean plants

Date:
May 14, 2010
Source:
Purdue University
Summary:
Just months after the soybean genome was sequenced, a scientist has discovered a long-sought gene that controls the plant's main stem growth and could lead to the creation of new types of soybean plants that will allow producers to incorporate desired characteristics into their local varieties.

Purdue's Jianxin Ma, from left, and postdoctoral researcher Zhixi Tian are using crosses of wild-type soybean and modern U.S. cultivar soybean plants to discover and pinpoint genes.
Credit: Purdue Agricultural Communication photo/Tom Campbell

Just months after the soybean genome was sequenced, a Purdue University scientist has discovered a long-sought gene that controls the plant's main stem growth and could lead to the creation of new types of soybean plants that will allow producers to incorporate desired characteristics into their local varieties.

Jianxin Ma (Jen-Shin Ma), an assistant professor of agronomy, used the research model plant Arabidopsis thaliana to discover the soybean gene that controls whether the plant's stem continues to grow after flowering. The find is a significant key to diversifying the types of soybeans growers can produce all over the world.

"The approach that we used in this study proves to be promising for rapid gene discovery and characterization in soybean," said Ma, whose findings were published in the Proceedings of the National Academy of Science. "With the genomic resources and information available, we spent only six months pinpointing and confirming the candidate gene -- the time it takes to grow one generation of soybean."

Soybean plants generally fall into two categories: determinate plants whose main stem tips stop growing after flowering, and indeterminate plants that continue main stem growth after flowering. In the United States, indeterminate soybeans are grown in the northern states, while determinate are grown in the southern states, Ma said. A northern U.S. grower who may want the characteristics found only in a type of determinate soybean would not be able to successfully grow a determinant cultivar in the north.

Ma was able compare the gene known to control Arabidopsis thaliana's stem growth pattern with the soybean genome to identify four soybean candidate genes. Those genes were then sequenced in a sample of different families of soybeans, including Glycine soja, a wild type of soybean; Glycine max landraces, which were varieties developed through selection in Asia thousands of years ago; and elite cultivars, which are grown today in the United States.

A single base-pair nucleotide mutation in the gene Dt1 was found to be the reason some plants are determinate.

"Wild soybeans are all indeterminate. This mutation that makes them determinate was selected by ancient farmers a few thousand years ago," Ma said. "It seems determinate stem was a favorable characteristic for ancient farmers."

Ma tested the find by using an indeterminate soybean Dt1 gene to change an Arabidopsis thaliana plant from determinate to indeterminate.

Ma believes that ancient farmers selected determinate plants that stay relatively short because they are less likely to lodge, or bend at the stem.

"Their appearance probably resulted in an ancient 'green revolution' in soybean cultivation in the southern parts of ancient China," Ma said.

Ma collaborated with Lijuan Oiu at the Chinese Academy of Agricultural Sciences, Phil McClean at North Dakota State University, Randy Nelson at the University of Illinois and Jim Specht at the University of Nebraska.

Ma said he would next try to find a gene that makes soybeans semi-determinate. The National Science Foundation, Indiana Soybean Alliance and Purdue University funded his work.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Brian Wallheimer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhixi Tian, Xiaobo Wang, Rian Lee, Yinghui Li, James E. Specht, Randall L. Nelson, Phillip E. McClean, Lijuan Qiu, and Jianxin Ma. Artificial selection for determinate growth habit in soybean. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1000088107

Cite This Page:

Purdue University. "Gene discovery may lead to new varieties of soybean plants." ScienceDaily. ScienceDaily, 14 May 2010. <www.sciencedaily.com/releases/2010/04/100427142144.htm>.
Purdue University. (2010, May 14). Gene discovery may lead to new varieties of soybean plants. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/04/100427142144.htm
Purdue University. "Gene discovery may lead to new varieties of soybean plants." ScienceDaily. www.sciencedaily.com/releases/2010/04/100427142144.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins