Featured Research

from universities, journals, and other organizations

New protein involved in longevity identified

Date:
May 7, 2010
Source:
Thomas Jefferson University
Summary:
Researchers have found that the level of a single protein in the tiny roundworm C. elegans determines how long it lives. Worms born without this protein, called arrestin, lived about one-third longer than normal, while worms that had triple the amount of arrestin lived one-third less.

C. elegans.
Credit: Bob Goldstein, UNC Chapel Hill / via Wikimedia Commons

Researchers in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University have found that the level of a single protein in the tiny roundworm C. elegans determines how long it lives. Worms born without this protein, called arrestin, lived about one-third longer than normal, while worms that had triple the amount of arrestin lived one-third less.

The research also showed that arrestin interacts with several other proteins within cells to regulate longevity. The human version of one of these proteins is PTEN, a well-known tumor suppressor. The study, to be published in the online edition of the Journal of Biological Chemistry, was chosen by the journal as the "Paper of the Week" -- considered in the top one percent of published articles.

Because most proteins in worms have human counterparts, these findings may have relevance to human biology and the understanding of cancer development, said Jeffrey L. Benovic, Ph.D., professor and chair of the department.

"The links we have found in worms suggest the same kind of interactions occur in mammals although human biology is certainly more complicated. We have much work to do to sort out these pathways, but that is our goal," said Dr. Benovic.

Researchers use the roundworm as a model because it offers a simple system to study the function of genes and proteins that are relevant to human biology. The worm, for example, has one arrestin gene, whereas humans have four. Worms only have 302 neurons compared to the 100 billion or so in the human brain. In addition, their short lifespan of two to three weeks allows for timely observation of effects on longevity.

Dr. Benovic and the study's first author, Aimee Palmitessa, Ph.D., a postdoctoral research fellow, studied signaling pathways activated by G protein-coupled receptors. These receptors bind to all kinds of hormones, sensory stimuli (such as light, odorants and tastants), neurotransmitters, etc., which then activate a cascade of signals inside the cell. They regulate many physiological processes and are the target for about half of the drugs currently on the market.

"When it comes to receptors, worms are actually more complex," said Dr. Benovic. "Humans have about 800 different kinds of G protein-coupled receptors while the worm has about 1,800. It relies upon these receptors to respond to sensory stimuli as well as various neurotransmitters and hormones."

Arrestins were initially found to turn off the activation of G protein-coupled receptors inside cells. "Their name comes from the fact that they arrest the activity of receptors, so the worm offers a good way to study how its single arrestin protein interacts with protein receptors," says Dr. Benovic. Two of the four arrestins that humans have are devoted to regulating receptors that respond to visual stimuli while the other two regulate most other receptors.

In this study, Dr. Palmitessa deleted the single arrestin gene in worms to see what would happen, and found, to her surprise, that these worms lived significantly longer. She also found that over-expressing arrestin in worms shortened their lifespan. "A little less arrestin is good -- at least for worms," Dr. Benovic reported.

This isn't the first discovery made regarding longevity in worms. Researchers have already found that activity of the insulin-like growth factor-1 (IGF-1) receptor can influence longevity in worms -- a finding that has also been replicated in fruit flies, mice, and humans. Like arrestin, a little less IGF-1 receptor activity is good, Dr. Benovic explained. Further research has shown that caloric restriction can also reduce IGF-1 receptor activation and, conversely, over-expression of the IGF-1 receptor is found in some human cancers.

In this study, Dr. Benovic and Dr. Palmitessa dug a little deeper and found that in the worms, arrestin interacted with two other proteins that play a critical role in its ability to regulate longevity. One of those proteins is the tumor suppressor PTEN; mutations in PTEN are involved in a number of different cancers.

Dr. Benovic said the connection between human arrestin and PTEN is not clear. "We don't know at this point if human arrestins regulate PTEN function or if anything happens to arrestin levels during the development of cancer," he said. "Do increasing levels turn off more PTEN, thus promoting cancer, or do levels decrease and allow PTEN to be more active?

"If it turns out to be the first scenario -- that increasing amounts of arrestin turn off the tumor suppressor activity of PTEN, then it may be possible to selectively inhibit that process," he says. "We have some interesting work ahead."

The study was funded in part by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Palmitessa, J. L Benovic. Arrestin and the Multi-PDZ domain containing protein MPZ-1 interact with PTEN and regulate C. elegans longevity. Journal of Biological Chemistry, 2010; DOI: 10.1074/jbc.M110.104612

Cite This Page:

Thomas Jefferson University. "New protein involved in longevity identified." ScienceDaily. ScienceDaily, 7 May 2010. <www.sciencedaily.com/releases/2010/05/100507161423.htm>.
Thomas Jefferson University. (2010, May 7). New protein involved in longevity identified. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/05/100507161423.htm
Thomas Jefferson University. "New protein involved in longevity identified." ScienceDaily. www.sciencedaily.com/releases/2010/05/100507161423.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins