Featured Research

from universities, journals, and other organizations

Without this protein, embryonic development halts

Date:
May 13, 2010
Source:
Children's Hospital of Philadelphia
Summary:
Researchers studying the common genetic disorder chromosome 22q.11 deletion syndrome have identified key proteins that act together to regulate early embryonic development. One protein is essential to life; in animal studies, embryos without the protein do not survive past the first few days of gestation. While not currently affecting treatments for the disease, the findings shed light on the biological events that give rise to chromosome 22q.11 deletion syndrome, which often includes congenital heart defects.

Researchers studying the common genetic disorder chromosome 22q.11 deletion syndrome have identified key proteins that act together to regulate early embryonic development. One protein is essential to life; in animal studies, embryos without the protein do not survive past the first few days of gestation.

Although the findings do not currently affect treatments for chromosome 22q.11 deletion syndrome, they shed light on the biological events that give rise to the syndrome, which often includes congenital heart defects. They also reveal the previously unsuspected importance of one protein in the earliest stages of development.

"The heart is among the first organs to develop in humans and other mammals," said neonatologist Jason Z. Stoller, M.D., of The Children's Hospital of Philadelphia, corresponding author of the study, appearing online in the May issue of the journal Experimental Biology and Medicine. Stoller collaborated with Jonathan A. Epstein, M.D., scientific director of the Penn Cardiovascular Institute at the University of Pennsylvania, and senior author of the study.

Chromosome 22q.11 deletion syndrome, also known as DiGeorge syndrome, is the most common human disorder caused by a missing chromosome region, occurring at least once in 4,000 live births. It can vary in severity, but may affect many parts of the body, with symptoms including heart defects, immune and endocrine problems, cleft palate, gastrointestinal conditions, growth delay and neuropsychiatric abnormalities. The 22q and You Center at Children's Hospital is an international leader in clinical care and research in this syndrome, providing multidisciplinary evaluation and treatment for hundreds of patients from over 40 states and 15 countries.

Because of structural instability in a portion of chromosome 22, one region may be deleted, typically containing 30 genes. One of those genes, TBX1, holds the genetic code for a type of protein called a transcription factor -- which regulates other genes. In 2005, Stoller and Epstein found that within this protein, also called TBX1, a particular domain was crucial and played a key role in chromosome 22q.11 deletion syndrome.

The current study, said Stoller, aimed to discover proteins that interact with the Tbx1 protein and to identify some of the biological events that give rise to chromosome 22q.11 deletion syndrome. The study team identified the protein Ash2l as an important partner of Tbx1. "The two proteins act together to influence other genes that may impair biological systems affected in the deletion syndrome," said Stoller. "Ash2l is important in epigenetics -- changes in gene activity that do not involve alterations to the genetic code spelled out in DNA." In epigenetic processes, chemical groups attached either to DNA, or to DNA-associated proteins called histones, switch gene activity on or off.

Many other steps resulting from this protein interaction have yet to be discovered, to determine how these molecular events cause specific effects, such as cleft palate or abnormalities in the thymus gland that occur in chromosome 22q.11 deletion syndrome. Said Stoller, "As with much research in basic science, discovering gene pathways and biological mechanisms may lay the foundation for future development of drugs or other therapies to act on these pathways, but such clinical applications are still in the future."

Another finding in the current study does not directly affect patients with the deletion syndrome, but shows that the Ash2l protein is absolutely essential to normal development. Mice that were bred to lack the gene for Ash2l produced embryos that, without exception, died very early in gestation. "The fact that this protein is necessary to early embryonic survival suggests that Ash2l regulates many genes during the early stages of development," said Stoller.

The National Institutes of Health provided funding support for this study. Co-authors with Stoller and Epstein were from the University of Pennsylvania School of Medicine; Mount Sinai School of Medicine, New York City; the University of California Los Angeles; and Huagene Biosciences of Fujian, China.


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason Z Stoller, Li Huang, Cheryl C Tan, Facan Huang, Diane D Zhou, Jifu Yang, Bruce D Gelb, and Jonathan A Epstein. Ash2l interacts with Tbx1 and is required during early embryogenesis. Experimental Biology and Medicine, 2010; 235 (5): 569-576 DOI: 10.1258/ebm.2010.009318

Cite This Page:

Children's Hospital of Philadelphia. "Without this protein, embryonic development halts." ScienceDaily. ScienceDaily, 13 May 2010. <www.sciencedaily.com/releases/2010/05/100512172344.htm>.
Children's Hospital of Philadelphia. (2010, May 13). Without this protein, embryonic development halts. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/05/100512172344.htm
Children's Hospital of Philadelphia. "Without this protein, embryonic development halts." ScienceDaily. www.sciencedaily.com/releases/2010/05/100512172344.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins