Featured Research

from universities, journals, and other organizations

How the wrong genes are repressed

Date:
June 13, 2010
Source:
University College London
Summary:
The mechanism by which "polycomb" proteins critical for embyronic stem cell function and fate are targeted to DNA has been identified by scientists in the UK. The discovery has implications for the fields of stem cell and tissue engineering.

PRC2 is brought to its target genes though binding to short RNA transcribed by RNA polymerase II. It blocks full transcription of developmental regulator genes that would otherwise act to alter the identity of the cell.
Credit: Image courtesy of University College London

The mechanism by which 'polycomb' proteins critical for embyronic stem cell function and fate are targeted to DNA has been identified by UCL scientists.

The discovery, which has implications for the fields of stem cell and tissue engineering, is detailed in research published in the journal Molecular Cell.

A key feature of stem cells is the suppression of genes that when later switched on lead to the differentiation of the cells into specific mature cell types, such as neurons or immune cells. Polycomb proteins, first discovered in fruit flies, are known to play a critical role in the suppression of these developmental genes. PRC2 (polycomb repressive complex-2) is present in all multicellular organisms and has been shown to be important in stem cell differentiation and early embryonic development.

The study authors found that PRC2 is brought to its target genes though binding to a new class of short RNAs transcribed by RNA polymerase II. PRC2 can then methylate chromatin, preventing the activation of developmental regulator genes that would otherwise act to alter the identity of the cell.

Senior author Dr Richard Jenner, UCL Infection & Immunity, said: "We knew that different sets of genes are turned on in different cells and that polycomb proteins prevent the wrong genes from being turned on, for example polycomb prevents the activation of neuronal genes in immune cells. However, although polycomb proteins repress genes, they are actually in a poised state -- some sort of gene activity seemed to be occurring.

"We wanted to find out what this activity was and our identification of these short RNAs explains this unusual gene state. Discovering that polycomb also binds to these RNAs shows how polycomb might be recruited to genes, which are then repressed to maintain the identities of different cell types. This has been a key question in the field for some time and has important implications for how we might be able to control cell fate in tissue engineering."


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aditi Kanhere, Keijo Viiri, Carla C. Araϊjo, Jane Rasaiyaah, Russell D. Bouwman, Warren A. Whyte, C. Filipe Pereira, Emily Brookes, Kimberly Walker, George W. Bell, Ana Pombo, Amanda G. Fisher, Richard A. Young, Richard G. Jenner. Short RNAs Are Transcribed from Repressed Polycomb Target Genes and Interact with Polycomb Repressive Complex-2. Molecular Cell, 2010; 38 (5): 675 DOI: 10.1016/j.molcel.2010.03.019

Cite This Page:

University College London. "How the wrong genes are repressed." ScienceDaily. ScienceDaily, 13 June 2010. <www.sciencedaily.com/releases/2010/06/100611123839.htm>.
University College London. (2010, June 13). How the wrong genes are repressed. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/06/100611123839.htm
University College London. "How the wrong genes are repressed." ScienceDaily. www.sciencedaily.com/releases/2010/06/100611123839.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) — Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) — In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins