Featured Research

from universities, journals, and other organizations

Enzyme trio for biosynthesis of hydrocarbon fuels

Date:
June 23, 2010
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Scientists have identified a trio of bacterial enzymes that can catalyze key steps in the conversion of plant sugars into hydrocarbon compounds for the production of green transportation fuels.

Harry Beller (foreground) and Ee-Been Goh of the Joint BioEnergy Institute have identified a trio of bacterial enzymes that can help convert plant sugars into hydrocarbon compounds for the production of green transportation fuels.
Credit: Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs

If concerns for global climate change and ever-increasing costs weren't enough, the disastrous Gulf oil spill makes an even more compelling case for the development of transportation fuels that are renewable, can be produced in a sustainable fashion, and do not put the environment at risk. Liquid fuels derived from plant biomass have the potential to be used as direct replacements for gasoline, diesel and jet fuels if cost-effective means of commercial production can be found.

Researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI) have identified a trio of bacterial enzymes that can catalyze key steps in the conversion of plant sugars into hydrocarbon compounds for the production of green transportation fuels.

Harry Beller, an environmental microbiologist who directs the Biofuels Pathways department for JBEI's Fuels Synthesis Division, led a study in which a three-gene cluster from the bacterium Micrococcus luteus was introduced into the bacterium Escherichia coli. The enzymes produced by this trio of genes enabled the E. coli to synthesize from glucose long-chain alkene hydrocarbons. These long-chain alkenes can then be reduced in size -- a process called "cracking" -- to obtain shorter hydrocarbons that are compatible with today's engines and favored for the production of advanced lignocellulosic biofuels.

"In order to engineer microorganisms to make biofuels efficiently, we need to know the applicable gene sequences and specific metabolic steps involved in the biosynthesis pathway," Beller says. "We have now identified three genes encoding enzymes that are essential for the bacterial synthesis of alkenes. With this information we were able to convert an E. coli strain that normally cannot make long-chain alkenes into an alkene producer."

Working with Beller on this study were Ee-Been Goh and Jay Keasling. The three were the co-authors of a paper that appeared earlier this year in the journal Applied and Environmental Microbiology.

It has long been known that certain types of bacteria are able to synthesize aliphatic hydrocarbons, which makes them promising sources of the enzymes needed to convert lignocellulose into advanced biofuels. However, until recently, little was known about the bacterial biosynthesis of non-isoprenoid hydrocarbons beyond a hypothesis that fatty acids are precursors. JBEI researchers in the Fuels Synthesis Division, which is headed by co-author Keasling, are using the tools of synthetic biology, and mathematical models of metabolism and gene regulation to engineer new microbes that can quickly and efficiently produce advanced biofuel molecules. E.coli is one of the model organisms being used in this effort because it is a well-studied microbe that is exceptionally amenable to genetic manipulation.

"We chose to work with M. luteus because a close bacterial relative was well-documented to synthesize alkenes and because a draft genome sequence of M. luteus was available," Beller says. "The first thing we did was to confirm that M. luteus also produces alkenes."

Beller and his colleagues worked from a hypothesis that known enzymes capable of catalyzing both decarboxylation and condensation should be good models for the kind of enzymes that might catalyze alkene synthesis from fatty acids. Using condensing enzymes as models, the scientists identified several candidate genes in M. luteus, including Mlut_13230. When expressed in E. coli together with the two adjacent genes -- Mlut_13240 and 13250 -- this trio of enzymes catalyzed the synthesis of alkenes from glucose. Observations were made both in vivo and in vitro.

"This group of enzymes can be used to make aliphatic hydrocarbons in an appropriate microbial host but the resulting alkenes are too long to be used directly as liquid fuels," Beller says. "However, these long-chain alkenes can be cracked -- a technique routinely used in oil refineries -- to create hydrocarbons of an appropriate length for diesel fuel."

The next step Beller says is to learn more about how these three enzymes work, particularly Mlut_13230 (also called OleA), which catalyzes the key step in the alkene biosynthesis pathway -- the condensation of fatty acids.

"We're also studying other pathways that can produce aliphatic hydrocarbons of an appropriate length for diesel fuels without the need for cracking," Beller says. "Nature has devised a number of biocatalysts to produce hydrocarbons, and our goal is to learn more about them for the production of green transportation fuels."

JBEI is one of three Bioenergy Research Centers funded by the U.S. Department of Energy to advance the development of the next generation of biofuels. Headquartered in Emeryville, California, JBEI is a scientific partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) and including the Sandia National Laboratories, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (located on the campus of Stanford University), and the Lawrence Livermore National Laboratory.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Beller et al. Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus. Applied and Environmental Microbiology, 2010; 76 (4): 1212 DOI: 10.1128/AEM.02312-09

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Enzyme trio for biosynthesis of hydrocarbon fuels." ScienceDaily. ScienceDaily, 23 June 2010. <www.sciencedaily.com/releases/2010/06/100621174001.htm>.
DOE/Lawrence Berkeley National Laboratory. (2010, June 23). Enzyme trio for biosynthesis of hydrocarbon fuels. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/06/100621174001.htm
DOE/Lawrence Berkeley National Laboratory. "Enzyme trio for biosynthesis of hydrocarbon fuels." ScienceDaily. www.sciencedaily.com/releases/2010/06/100621174001.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins