Featured Research

from universities, journals, and other organizations

Breaking biomass better

Date:
July 12, 2010
Source:
DOE/Joint Genome Institute
Summary:
Several new projects focus on identifying enzymes in organisms such as fungi that degrade cellulosic feedstocks.

One of the challenges in making cellulosic biofuels commercially viable is to cost-effectively deconstruct plant material to liberate fermentable energy-rich sugars. The U.S. Department of Energy (DOE) is funding several projects focused on identifying enzymes in organisms that optimally degrade cellulosic feedstocks. One such source are fungi, which break down dead wood and leaf litter in forests; in fact, some pest management companies consider wood rot more destructive for homes than termites.

The DOE Joint Genome Institute (JGI) previously sequenced and published the genomes of two wood-decaying fungi. Now a team of researchers led by scientists from the DOE JGI and the University of Utrecht announce the analysis of a third such genome in a study published online July 11 in Nature Biotechnology. All told, DOE JGI has sequenced and annotated 40 fungal genomes, and 40 more are currently in the works.

"When we go into a forest we don't see layers of dead branches because wood decay fungi take care of them," said Igor Grigoriev, head of the DOE JGI's Fungal Genomics Program and a senior author on the study. "So when we think about bioenergy and degrading biomass and converting that into biofuel, we would like to learn the most efficient ways of doing that from fungi, which have invented many ways of doing that in nature. Schizophyllum commune is the second white rot fungus and third wood degrader we've sequenced. The DOE JGI sequenced the first white rot fungal genome -- Phanerochaete chrysosporium -- in 2004. Then last year we sequenced the first brown rot fungal genome -- Postia placenta." Postia was found to utilize a unique arsenal of small oxidizing agents that blast through plant cell walls to decompose cellulose into simple sugars.

Found on every continent except Antarctica, S. commune is characteristic of other white rot fungi. S. commune breaks down cellulose and lignin by invading xylem tissue, and researchers hope that studying its 38.5 million nucleotide genome (containing about 13,200 genes) will help them harness the most relevant set of enzymes for specific biofuel production strategies. White rot fungi also have potential bioremediation applications as they have enzymes that can break down contaminants such as uranium and heavy metals.

"The surprise we saw is how significantly larger is the variety of enzymes in S. commune that are involved in plant biomass degradation compared to P. chrysosporium," Grigoriev said. "In fact, S. commune has among the most extensive enzymatic machinery for degrading cellulose, hemicellulose, and lignin of the fungi we examined."

One additional advantage to using S. commune, said study senior author Han Wosten, a microbiologist at the University of Utrecht who is studying S. commune's mushroom-forming capabilities, is that the fungus can be easily grown in the lab. Additionally, he said, researchers can inactivate the genes in S. commune by deleting them. "This is the only mushroom-forming fungus in which gene deletions have been made," he said, "allowing us to study the roles of genes in wood degradation and mushroom formation." Wosten also suggested that there are opportunities for inserting genes and modulating expression levels to drive target protein production pathways.

Grigoriev said the DOE JGI is in the process of sequencing over a dozen more wood-decaying fungi. According to the Genomes OnLine Database (GOLD) the DOE JGI is responsible for more than a third of all fungal genomes sequenced or in the queue to be sequenced worldwide, and with two white-rot fungi and a brown-rot fungus done, he added, "we think we're only touching the surface and we need to look at more genomes in order to understand the whole scope of diversity and mechanisms applied to degrading cellulose."

Other DOE JGI authors on the paper are Andrea Aerts, Scott Baker (Pacific Northwest National Laboratory), Erika Lindquist, Susan Lucas, Asaf Salamov, and Jeremy Schmutz (HudsonAlpha Institute for Biotechnology).


Story Source:

The above story is based on materials provided by DOE/Joint Genome Institute. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Joint Genome Institute. "Breaking biomass better." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100712141857.htm>.
DOE/Joint Genome Institute. (2010, July 12). Breaking biomass better. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/07/100712141857.htm
DOE/Joint Genome Institute. "Breaking biomass better." ScienceDaily. www.sciencedaily.com/releases/2010/07/100712141857.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) — Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) — A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins