Featured Research

from universities, journals, and other organizations

Antibiotics for the prevention of malaria

Date:
August 13, 2010
Source:
University Hospital Heidelberg
Summary:
If mice are administered an antibiotic for three days and are simultaneously infected with malaria, no parasites appear in the blood and life-threatening disease is averted. In addition, the animals treated in this manner also develop robust, long-term immunity against subsequent infections, according to new research.

A Plasmodium sporozoite (infectious stage of the malaria parasite transmitted by mosquito bite) entering the first host cell in the human body, i.e. the liver cell.
Credit: Dr. Volker Brinkmann, Max Planck Institute for Infection Biology, Berlin.

If mice are administered an antibiotic for three days and are simultaneously infected with malaria, no parasites appear in the blood and life-threatening disease is averted. In addition, the animals treated in this manner also develop robust, long-term immunity against subsequent infections.

This discovery was made by the team headed by Dr. Steffen Borrmann from the Department of Infectious Diseases at Heidelberg University Hospital in cooperation with Dr. Kai Matuschewski of the Max Planck Institute for Infection Biology in Berlin. The scientists think that safe and affordable prophylaxis with antibiotics in residents of areas with high malaria transmission has the potential to be used as a natural "needle-free" vaccination against malaria.

Malaria is still the most common and most dangerous vector-borne disease. The World Health Organization (WHO) estimates that a million people a year die of malaria, especially children in African countries. Globally, over three billion people are at risk of being infected with malaria. There is still no medicine that reliably protects people from infection and simultaneously promotes building up long-term immunity.

Mice in the model had full protection

The scientists developed the following immunization model on mice. Sporozoites (infectious stage of malaria parasites transmitted by mosquitoes) were injected directly into the animals' blood. At the same time, mice were treated with the antibiotics clindamycin or azithromycin. Normally, the sporozoites enter the liver, where they replicate massively and mature to the disease-causing blood stage forms (merozoites). The medication did not slow down the maturing of the merozoites in liver cells, but they prevented the red corpuscles in the blood from becoming infected. The typical disease symptoms such as fever and if left untreated, fatal malaria, which are caused solely by the blood stage forms of the parasite, did not occur. The parasites that accumulated in the liver gave the immune system sufficient stimulus to develop robust, long-term immunity. After 40 days, four months, and six months, the researchers again infected the mice with sporozoites, this time without adding antibiotics. All animals had complete protection against malaria.

Transferability to humans

This of course raises the question of whether these results can be transferred to humans. Under field conditions, mosquito bites confront the human body with frequent, but rather low concentrations of parasites. When mimicking this infection mode in the mouse model, 30 percent of the mice were still protected. For 85 percent of the mice that were still infected, the malaria did not affect the brain, indicating a favorable prognosis.

"The antibiotics used are reasonably priced medicines with few and self-limiting side effects. The periodic, prophylactic administration of antibiotics to people in malaria regions has the potential to be used as a "needle-free," natural vaccination. This would give us an additional powerful tool against malaria," says Dr. Steffen Borrmann. Dr. Kai Matuschewski adds, "A major motivation for our study was to test a simple concept that can also be realized in malaria regions. We are convinced that weakened parasites offer the best protection against a complex parasitical disease such as malaria."

New options for future medicines

The antibiotics administered target the apicoplast of the parasites. That is a small cellular organ of bacterial origin that the parasites need to penetrate other cells of the host organism. But since the medication blocking the apicoplast does not prevent the sporozoites from reproducing in the liver cell, the immune system is exposed to the full antigen load of a natural infection. This is not the case for previously developed vaccines with radiated or genetically modified malaria pathogens. "Even if our results cannot be confirmed in a field trial, the apicoplast is a promising target for future medication," explains Dr. Johannes Friesen of the Max Planck Institute for Infection Biology.


Story Source:

The above story is based on materials provided by University Hospital Heidelberg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Friesen et al. Natural Immunization Against Malaria: Causal Prophylaxis with Antibiotics. Science Translational Medicine, 2010; 2 (40): 40ra49 DOI: 10.1126/scitranslmed.3001058

Cite This Page:

University Hospital Heidelberg. "Antibiotics for the prevention of malaria." ScienceDaily. ScienceDaily, 13 August 2010. <www.sciencedaily.com/releases/2010/07/100720101347.htm>.
University Hospital Heidelberg. (2010, August 13). Antibiotics for the prevention of malaria. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/07/100720101347.htm
University Hospital Heidelberg. "Antibiotics for the prevention of malaria." ScienceDaily. www.sciencedaily.com/releases/2010/07/100720101347.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins