Featured Research

from universities, journals, and other organizations

Scientist IDs genes that promise to make biofuel production more efficient, economical

Date:
August 20, 2010
Source:
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Summary:
Metabolic engineers have taken the first step toward the more efficient and economical production of biofuels by developing a strain of yeast with increased alcohol tolerance. Overexpression of a particular gene increased ethanol volume by more than 70 percent and ethanol tolerance by more than 340 percent compared to the control strain.

A University of Illinois metabolic engineer has taken the first step toward the more efficient and economical production of biofuels by developing a strain of yeast with increased alcohol tolerance.

Related Articles


Biofuels are produced through microbial fermentation of biomass crops, which yield the alcohol-based fuels ethanol and iso-butanol if yeast is used as the microbe to convert sugars from biomass into biofuels.

"However, at a certain concentration, the biofuels that are being created become toxic to the yeast used in making them. Our goal was to find a gene or genes that reduce this toxic effect," said Yong-Su Jin, an assistant professor of microbial genomics in the U of I Department of Food Science and Human Nutrition and a faculty member in the U of I's Institute for Genomic Biology.

Jin worked with Saccharomyces cerevisiae, the microbe most often used in making ethanol, to identify four genes (MSN2, DOG1, HAL1, and INO1) that improve tolerance to ethanol and iso-butanol when they are overexpressed.

"We expect these genes will serve as key components of a genetic toolbox for breeding yeast with high ethanol tolerance for efficient ethanol fermentation," he said.

To assess the overexpressed genes' contribution to the components that have limited biofuel production, the scientists tested them in the presence of high concentrations of glucose (10%), ethanol (5%), and iso-butanol (1%) and compared their performance to a control strain of S. cerevisiae.

Overexpression of any of the four genes remarkably increased ethanol tolerance, but the strain in which INO1 was overexpressed elicited the highest ethanol yield and productivity -- with increases of more than 70 percent for ethanol volume and more than 340 percent for ethanol tolerance when compared to the control strain.

According to Jin, the functions of the identified genes are very diverse and unrelated, which suggests that tolerance to high concentrations of iso-butanol and ethanol might involve the complex interactions of many genetic elements in yeast.

"For example, some genes increase cellular viability at the expense of fermentation. Others are more balanced between these two functions," he said.

"Identification of these genes should enable us to produce transportation fuels from biomass more economically and efficiently. It's a first step in understanding the cellular reaction that currently limits the production process," he said.

Further study of these genes should increase alcohol tolerance even further, and that will translate into cost savings and greater efficiency during biofuel production, he added.

The article appears in the August 20 issue of the Journal of Biotechology. Co-authors are Min-Eui Hong, Ki-Sung Lee, Byung Jo Yu, and Dae-Hyuk Kweon of the Sungkyunkwan University in Suwon, Republic of Korea; Sung Min Park, Hyun Min Koo, and Jae Chan Park of Samsung Advanced Institute of Technology, Yongin, Republic of Korea. This research was supported by the Samsung Advanced Institute of Technology.


Story Source:

The above story is based on materials provided by University of Illinois College of Agricultural, Consumer and Environmental Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Scientist IDs genes that promise to make biofuel production more efficient, economical." ScienceDaily. ScienceDaily, 20 August 2010. <www.sciencedaily.com/releases/2010/08/100819112220.htm>.
University of Illinois College of Agricultural, Consumer and Environmental Sciences. (2010, August 20). Scientist IDs genes that promise to make biofuel production more efficient, economical. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/08/100819112220.htm
University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Scientist IDs genes that promise to make biofuel production more efficient, economical." ScienceDaily. www.sciencedaily.com/releases/2010/08/100819112220.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins