Featured Research

from universities, journals, and other organizations

Genome comparison of ants establishes new model species for molecular research

Date:
August 26, 2010
Source:
University of Pennsylvania School of Medicine
Summary:
By comparing two species of ants, researchers have established an important new avenue of research for epigenetics -- the study of how the expression or suppression of particular genes affects an organism's characteristics, development and even behavior.

Top: Jerdon’s jumping ant (Harpegnathos saltator). Bottom: Florida carpenter ant (Camponotus floridanus).
Credit: Juergen Liebig, Arizona State University

By comparing two species of ants, Shelley Berger, PhD, the Daniel S. Och University Professor at the University of Pennsylvania, and colleagues Danny Reinberg, PhD, New York University, and Juergen Liebig, PhD, Arizona State University, have established an important new avenue of research for epigenetics -- the study of how the expression or suppression of particular genes affects an organism's characteristics, development, and even behavior.

Ants, the new model system used in this study, organize themselves into caste-based societies in which most of the individuals are sterile females, limited to highly specialized roles such as workers and soldiers. Only one queen and the relatively small contingent of male ants are fertile and able to reproduce. Yet despite such extreme differences in behavior and physical form, all females within the colony appear to be genetically identical.

Berger, who directs Penn's Epigenetics program, and colleagues believe that epigenetic mechanisms -- chemical modifications to DNA and its supporting proteins that affect gene expression -- may be critical in establishing such broad variations in behavior and morphology that arise in individuals, despite having the same genome.

In a study published in Science, Berger, her Penn colleagues, and a diverse international team of collaborators including ant biologists, geneticists, and biochemists from Arizona State, NYU, Howard Hughes Medical Institute, and the Chinese Academy of Sciences, showed how differences in gene expression between two ant species, the Florida carpenter ant (Camponotus floridanus) and Jerdon's jumping ant (Harpegnathos saltator), correlate with separate castes in each.

Sequencing the genomes of each species for the first time, the team also used RNA sequencing to study what Berger calls "the question of whether the differences between female workers and female queens is mostly epigenetic rather than genetic."

The two species were chosen for comparison because of their marked differences in behavioral structure. "Harpegnathos is more primitive and Camponotus is more advanced in terms of social organization," explains Berger. "Camponotus has different worker castes that specialize their behavior and Harpegnathos has only one worker caste, but those workers have plasticity in their fertility." When a Harpegnathos queen dies, other worker ants can actually transform and take over her role, preserving the colony, while the death of a Camponotus queen means the end of that particular colony. The group believes that comparing the flexibility of the less specialized, less advanced Harpegnathos with the more rigid, specialized Camponotus will provide a way of determining whether such changes are controlled by epigenetic modifications.

Citing entomologist E. O. Wilson's observation that an ant colony can be viewed as a single "superorganism," Berger compares the different castes of species to human cell differentiation, the processes that determine whether an embryonic stem cell ultimately becomes, for example, a liver cell rather than a neuron in the brain. "It's these epigenetic changes that are regulating, in part, all of these different cell types in our bodies. The ants -- the different castes -- are the same genome, so there must be epigenetic regulation. " Within that genome, the researchers found all of the gene families that correspond to major epigenetic regulators in mammals. "This makes ants an excellent model for studying epigenetic regulatory mechanisms," says Berger.

Co-author Reinberg studied the ants' DNA methylation levels -- a key epigenetic mechanism that changes DNA expression -- and found that the more primitive Harpegnathos has lower levels of DNA methylation than the more advanced Camponotus. Studying the ant genomes, the research team also found genes corresponding to enzymes that chemically modify histones, the spool-like proteins around which the DNA winds. Modification of histones is another key epigenetic mechanism. The enzymes that were found coded in the ant genomes included histone acetyltransferases (HATs) and deacetylases (HDACs).

Another important question the researchers examined is how such epigenetic changes are activated to produce behavioral or structural changes in ants, such as the transformation of a Harpegnathos worker into a functional queen. Ants communicate by complex chemical signals based on touch and smell that trigger particular responses. The researchers identified differences among the ant castes in the expression of genes that may code for these communication functions.

Epigenetic factors also appear to play a significant role in longevity and aging, another major research focus of Berger's research group at Penn. She notes, "This division of existence into worker versus queen, in which workers carry out all the activities of the colony whereas the queen is strictly reproductive, apparently allows the queen to live longer than the workers by a substantial amount, up to tenfold in some species." Queens may also live even a hundred times longer than males.

Indeed, the genomic analysis in one of the species found higher expression levels of telomerase enzymes, which counteract cell aging, in the queens relative to the workers -- potentially explaining the increased longevity of the queens.

In the near term, the team plans to work with other research groups to compare the genomes of Harpegnathos and Camponotus to other ant species to reveal how their genomes may underlie profound differences among the species. They will also continue to deeply probe the ant as a model organism for more clues on how epigenetic regulation operates to distinguish the ant castes.

"I think it's early to claim that we have clear epigenetic changes, but I think we're certainly headed in that direction," says Berger. While the work promises intriguing insights into the world of eusocial animals such as ants, ultimately it may also have important implications for human beings.

"Many of the changes that underlie human disease are epigenetic in nature," Berger points out. "Using very sophisticated models like ants, the more we can understand how epigenetics might regulate these profound changes in physiology, the more we're going to understand about human development, aging and disease, and ultimately behavior."

This research was funded by an Howard Hughes Medical Institute Collaborative Innovation Award.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roberto Bonasio, Guojie Zhang, Chaoyang Ye, Navdeep S. Mutti, Xiaodong Fang, Nan Qin, Greg Donahue, Pengcheng Yang, Qiye Li, Cai Li, Pei Zhang, Zhiyong Huang, Shelley L. Berger, Danny Reinberg, Jun Wang, and Jόrgen Liebig. Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator. Science, 2010: 329 (5995): 1068-1071 DOI: 10.1126/science.1192428

Cite This Page:

University of Pennsylvania School of Medicine. "Genome comparison of ants establishes new model species for molecular research." ScienceDaily. ScienceDaily, 26 August 2010. <www.sciencedaily.com/releases/2010/08/100826152215.htm>.
University of Pennsylvania School of Medicine. (2010, August 26). Genome comparison of ants establishes new model species for molecular research. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/08/100826152215.htm
University of Pennsylvania School of Medicine. "Genome comparison of ants establishes new model species for molecular research." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826152215.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins