Featured Research

from universities, journals, and other organizations

Imaging reveals key metabolic factors of cannibalistic bacteria

Date:
September 7, 2010
Source:
University of California - San Diego
Summary:
Researchers have revealed new details about how cannibalistic bacteria identify peers suitable for consumption. The work, which employed imaging mass spectrometry, is a first step toward a broader effort to map all signaling molecules between organisms.

A colony of Bacillus subtilis (right) inhibits growth of human pathogen S. epidermus.
Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego have revealed new details about how cannibalistic bacteria identify peers suitable for consumption. The work, which employed imaging mass spectrometry, is a first step toward a broader effort to map all signaling molecules between organisms.

"These are the molecules that control biology," said Pieter C. Dorrestein, PhD, associate professor at UC San Diego's Skaggs School of Pharmacy and Pharmaceutical Sciences and corresponding author of a paper published in the online edition of the Proceedings of the National Academy of Sciences.

Bacterial cannibalism occurs when a subpopulation of a microbial colony eats another subpopulation, harvesting the latter's nutrients to sustain growth in times when external food sources are limited. The phenomenon is well-known, but not well-characterized. For example, researchers have not known exactly how microbes identify, select and kill their genetically identical siblings.

Dorrestein, with colleagues at UC San Diego and in Iowa and Texas, studied Bacillus subtilis, a common species with a complex life cycle that thrives in diverse living conditions, from soil to contaminated wounds to the intestinal tract. Using imaging mass spectrometry, the researchers generated spatial distributions or chemical maps of molecules within the microbe, focusing in particular on two metabolites called sporulation delaying protein (SDP) and sporulation killing factor (SKF), which the scientists correctly hypothesized were directly involved in the cannibalistic process.

"These are the first fully characterized molecules that enable B. subtilis to 'digest' or differentiate genetically identical cells," said Dorrestein. "Our work also shows that the molecules the bacteria uses to differentiate themselves are akin to those of a multicellular organism, even though the microbes are genetically identical. Most people do not think of a microbial colony as a differentially organized multicellular organism."

Since SDP and SKF were involved in killing bacteria, the scientists also explored whether the molecules might be effective weapons against human pathogens. Their findings were mixed. SKF had no effect on targeted pathogens like Pseudomonas aeruginosa or Klebsiella pneumonia, but SDP displayed potent inhibitory activity against two variants of Staphylococcus aureas and other pathogens. Dorrestein said SDP itself has limited potential as an antibacterial agent, "but it could serve as an antibiotic lead compound where the active portion can be modified to meet the requirements of a therapeutic agent. It further shows that imaging mass spectrometry can be used to discover biologically active molecules."

He said additional antibacterial molecules are likely to be found in other cannibalistic species, but they remain to be identified and described.

Co-authors with Dorrestein are Wei-Ting Liu, Jane Y. Yang and David Gonzalez of the Department of Chemistry and Biochemistry at UCSD; Yu-Liang Yang and Yuquan Xu of UCSD's Skaggs School of Pharmacy and Pharmaceutical Sciences; Anne Lamsa of the Division of Biological Sciences at UCSD; Nina M. Haste of the Center for Marine Biotechnology and Biomedicine and the Skaggs School of Pharmacy and Pharmaceutical Sciences; Julio Ng of the Department of Computer Science at UCSD; Craig D. Ellermeier of the Department of Microbiology, University of Iowa; Paul D. Straight of the Department of Biochemistry and Biophysics at Texas A&M University; Pavel A. Pevzner of UCSD's Department of Computer Science and the National Center for Research Resources Center for Computational Mass Spectrometry; Joe Pogliano of UCSD's Division of Biological Sciences; Victor Nizet of the Skaggs School of Pharmacy and Pharmaceutical Science, Center for Marine Biotechnology and Biomedicine and Department of Pediatrics, UC San Diego; and Kit Pogliano, UCSD Division of Biological Sciences.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. W.-T. Liu, Y.-L. Yang, Y. Xu, A. Lamsa, N. M. Haste, J. Y. Yang, J. Ng, D. Gonzalez, C. D. Ellermeier, P. D. Straight, P. A. Pevzner, J. Pogliano, V. Nizet, K. Pogliano, P. C. Dorrestein. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1008368107

Cite This Page:

University of California - San Diego. "Imaging reveals key metabolic factors of cannibalistic bacteria." ScienceDaily. ScienceDaily, 7 September 2010. <www.sciencedaily.com/releases/2010/09/100903092513.htm>.
University of California - San Diego. (2010, September 7). Imaging reveals key metabolic factors of cannibalistic bacteria. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/09/100903092513.htm
University of California - San Diego. "Imaging reveals key metabolic factors of cannibalistic bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/09/100903092513.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins