Featured Research

from universities, journals, and other organizations

Genome of mosquito that spreads West Nile virus sequenced

Date:
September 30, 2010
Source:
University of California -- Riverside
Summary:
To understand the genetic makeup of the Culex mosquito, and how the insect is able to transmit this and other viruses, scientists have sequenced the genome of Culex quinquefasciatus, a representative of the Culex genus of mosquitoes. The genome could give scientists clues to target specific Culex genes involved in the transmission of West Nile virus, St. Louis encephalitis, lymphatic filariasis and other diseases.

This image shows Culex quinquefasciatus, a representative of the Culex genus of mosquitoes.
Credit: Jim Gathany/Center for Disease Control and Prevention.

Last year, 720 people in the United States became infected with West Nile virus, a potentially serious illness that is spread through the bite of a mosquito -- the Culex mosquito -- that has first fed on infected birds. Such mosquitoes have the virus eventually located in their salivary glands and transmit the disease to humans and animals when they bite to draw blood.

Related Articles


To understand the genetic makeup of the Culex mosquito, and how the insect is able to transmit this and other viruses, an international team of scientists, led by geneticists at the University of California, Riverside, has sequenced the genome of Culex quinquefasciatus, a representative of the Culex genus (or group) of mosquitoes.

A close study of the genome, the researchers say, could give scientists the clues they need to target specific Culex genes that are involved in the transmission of West Nile virus, St. Louis encephalitis, lymphatic filariasis and other diseases spread by the Culex group of mosquitoes. Knowledge of such genes would be an important step in developing strategies to combat the spread of these pathogens.

The genomes of Anopheles gambiae (which transmits malaria) and Aedes aegypti (which transmits yellow fever and dengue) were published in 2002 and 2007, respectively. Now, with the sequencing of Culex quinquefasciatus, scientists have completed the triangulation of entire genome sequences of three genera of mosquitoes that are the main vectors of deadly human diseases, and will have access to representative genomes from the three mosquito groups.

"We can now compare and contrast all three mosquito genomes, and identify not only their common genes but also what is unique to each mosquito," said Peter Arensburger, an assistant research entomologist in the Center for Disease Vector Research and the Department of Entomology, who led the substantial bioinformatics component of the multiyear research effort. "Moreover, now that we have sequenced the Culex genome, we can begin to identify which mosquito genes get turned on or turned off in response to infection -- knowledge that is critical to developing strategies for preventing the transmission of West Nile virus and other disease vectors."

Study results appear in the Oct. 1 issue of Science.

The researchers report that Culex quinquefasciatus, also known as the southern house mosquito, has a genome size of 579 million nucleotides, which is intermediate between the genome sizes of Anopheles gambiae (278 million nucleotides) and Aedes aegypti (about 1380 million nucleotides). However, Culex quinquefasciatus has a higher number of genes (18,883 genes) than Anopheles gambiae (12,457 genes) or Aedes aegypti (15,419 genes).

"We do not know why this is the case," said Arensburger. "Culex quinquefasciatus is very widely distributed throughout the globe; the same species is found in California and South Africa. It is possible that the large number of genes in this mosquito helped it survive in a wide variety of habitats."

The researchers also report that the genome for Culex quinquefasciatus bears more similarity to the Aedes aegypti genome than the Anopheles gambiae genome.

Thirty-seven institutions collaborated with UC Riverside on the research project that began in 2004. Besides Arensburger, the UCR team includes Peter Atkinson, the director of the Center for Disease Vector Research and a professor of entomology, and Alexander Raikhel, a distinguished professor of entomology.

"We coordinated with researchers around the world to accomplish the sequencing of the Culex genome," said Atkinson, the senior author of the study and the principal investigator of the grants that funded UCR's contribution to the research. "We could not have done this without the outstanding computing support we received from UCR's Institute for Integrative Genome Biology. It enabled us to perform vast and complex analyses here on campus, and gave us the confidence to get the project going and completed."

With more than 1,200 described species, Culex is the most diverse and geographically widespread of the three mosquito genera. The adult mosquito measures 4-10 millimeters. Only females spread disease. Culex-transmitted diseases, such as West Nile virus, are difficult to eradicate because birds and animals the mosquito feeds on are mobile, capable of spreading disease quickly over large areas.

West Nile virus first appeared in the United States in the summer of 1999. Since then it has been found in all 48 contiguous states.

The research paper in Science is accompanied by a second paper, led by researchers at Boston College, Mass., and Iowa State University, that focuses on a set of immune genes in Culex quinquefasciatus. The paper explores why some of these genes are "upregulated" (show an increase in gene expression) while others are "downregulated" in response to pathogens. Arensburger, Atkinson and Raikhel are coauthors on the companion paper in the same issue of Science on Culex immunobiology with Raikhel's laboratory contributing significantly to this work.

With the sequencing of the Culex quinquefasciatus genome completed, UCR researchers will focus next on genes of particular interest to efforts aimed at preventing the spread of human diseases by these mosquitoes.

Grants from the National Institutes of Health supported UCR's contribution to the research.


Story Source:

The above story is based on materials provided by University of California -- Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Arensburger, K. Megy, R. M. Waterhouse, J. Abrudan, P. Amedeo, B. Antelo, L. Bartholomay, S. Bidwell, E. Caler, F. Camara, C. L. Campbell, K. S. Campbell, C. Casola, M. T. Castro, I. Chandramouliswaran, S. B. Chapman, S. Christley, J. Costas, E. Eisenstadt, C. Feschotte, C. Fraser-Liggett, R. Guigo, B. Haas, M. Hammond, B. S. Hansson, J. Hemingway, S. R. Hill, C. Howarth, R. Ignell, R. C. Kennedy, C. D. Kodira, N. F. Lobo, C. Mao, G. Mayhew, K. Michel, A. Mori, N. Liu, H. Naveira, V. Nene, N. Nguyen, M. D. Pearson, E. J. Pritham, D. Puiu, Y. Qi, H. Ranson, J. M. C. Ribeiro, H. M. Roberston, D. W. Severson, M. Shumway, M. Stanke, R. L. Strausberg, C. Sun, G. Sutton, Z. Tu, J. M. C. Tubio, M. F. Unger, D. L. Vanlandingham, A. J. Vilella, O. White, J. R. White, C. S. Wondji, J. Wortman, E. M. Zdobnov, B. Birren, B. M. Christensen, F. H. Collins, A. Cornel, G. Dimopoulos, L. I. Hannick, S. Higgs, G. C. Lanzaro, D. Lawson, N. H. Lee, M. A. T. Muskavitch, A. S. Raikhel, P. W. Atkinson. Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics. Science, 2010; 330 (6000): 86 DOI: 10.1126/science.1191864

Cite This Page:

University of California -- Riverside. "Genome of mosquito that spreads West Nile virus sequenced." ScienceDaily. ScienceDaily, 30 September 2010. <www.sciencedaily.com/releases/2010/09/100930142718.htm>.
University of California -- Riverside. (2010, September 30). Genome of mosquito that spreads West Nile virus sequenced. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2010/09/100930142718.htm
University of California -- Riverside. "Genome of mosquito that spreads West Nile virus sequenced." ScienceDaily. www.sciencedaily.com/releases/2010/09/100930142718.htm (accessed November 1, 2014).

Share This



More Plants & Animals News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) — For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) — The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) — A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) — Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins