Featured Research

from universities, journals, and other organizations

Identifying enzymes to explode superbugs

Date:
October 5, 2010
Source:
Institute of Physics
Summary:
With the worrying rise of antibiotic-resistant superbugs like MRSA, scientists from a wide range of disciplines are teaming up to identify alternative therapies to keep them at bay. Now, researchers have developed a pioneering method that can identify lytic enzymes for optimum bacteria killing characteristics.

With the worrying rise of antibiotic-resistant superbugs like MRSA, scientists from a wide range of disciplines are teaming up to identify alternative therapies to keep them at bay.

One long-considered solution is the use of lytic enzymes which attack bacteria by piercing their cell walls. Lytic enzymes are proteins that are naturally present in viruses, bacteria and in body fluids such as tears, saliva and mucus. However, until now, largely ad-hoc methods have been used to calculate the enzymes' killing abilities.

New research published October 4, in IOP Publishing's Physical Biology, shows how a group of US researchers have developed a pioneering method that can identify lytic enzymes for optimum bacteria killing characteristics.

In 1923, five years before discovering penicillin and laying the path for the development of antibiotics, Alexander Fleming had already noticed that a substance in mucus samples, lytic enzymes, could kill bacteria.

However, the success of antibiotics left the development of this finding in the shadows.

With the rise of antibiotic resistant superbugs, partially a result of antibiotics being a 'one-size-fits-all' therapy, Fleming's early discovery has been reinvigorated and lytic enzymes are back in the spotlight. Encouragingly, most lytic enzymes kill only a limited range of bacteria, unlike antibiotics, which allows researchers to target superbugs while potentially leaving beneficial bacteria intact.

To identify the bacteria-killing characteristics of lytic enzymes Joshua Weitz and Gabriel Mitchell, quantitative biologists at the Georgia Institute of Technology, teamed up with Daniel Nelson, a biochemist from the University of Maryland, to identify, on a microscopic scale, the rate at which these enzymes pierce cell walls leading to bacterial death.

The piercing of cell walls can be fatal to bacteria because of a bacterium's internal pressure; the piercing is analogous to removing the wire on a shaken-up bottle of champagne.

The researchers write, "While lytic enzymes and their associated antimicrobial activity have been studied for decades, their use as therapeutics has only recently been investigated in detail. We measured the amount of light passing through a bacterial solution, in much the same way as astrophysicists use light measurements for far-away galaxies: to infer processes at a far different scale based on interpreting the information contained in the light coming from them."

By measuring how lytic enzymes chemically clear a cloudy solution of living bacteria, the team was able to predict the cell level processes underlying bacterial death. In doing so, the researchers used the mathematical theory of inverse problems to overcome technical challenges in quantifying, for the first time, the microscopic killing properties of lytic enzymes.

The team was also able to estimate the extent to which genetically identical bacteria may be differentially susceptible to death via lytic enzymes.

"We believe we have taken the first step down a road which will allow us to identify more enzymes, choose those with the best activity, and engineer even higher activity, to develop an effective therapy against a wide range of dangerous superbugs."

The researchers hope their quest will result in "push button technology" to hasten the development of engineered enzymes for clinical use.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mitchell et al. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics. Phys. Biol., 7 046002 DOI: 10.1088/1478-3975/7/4/046002

Cite This Page:

Institute of Physics. "Identifying enzymes to explode superbugs." ScienceDaily. ScienceDaily, 5 October 2010. <www.sciencedaily.com/releases/2010/10/101004101534.htm>.
Institute of Physics. (2010, October 5). Identifying enzymes to explode superbugs. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2010/10/101004101534.htm
Institute of Physics. "Identifying enzymes to explode superbugs." ScienceDaily. www.sciencedaily.com/releases/2010/10/101004101534.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins