Featured Research

from universities, journals, and other organizations

Model unfolds proteins gently

Date:
October 18, 2010
Source:
American Institute of Physics
Summary:
Protein molecules inside cells are constantly reorganizing themselves, driven by very tiny forces exerted by all the other molecules in their crowded environment. Most experimental techniques and theoretical/computational models are necessarily built around much greater driving forces. A new theoretical model investigates the unfolding of fibronectin under gentler conditions.

Protein molecules inside cells are constantly reorganizing themselves, driven by very tiny forces exerted by all the other molecules in their crowded environment. Most experimental techniques and theoretical/computational models are necessarily built around much greater driving forces.

Related Articles


A new theoretical model reported in the Journal of Chemical Physics investigates the unfolding of fibronectin under gentler conditions.

"Typical models study very fast processes and consume a lot of CPU time," says author Alessandro Pelizzola of the Politecnico di Torino in Italy. "The strengths of our model are simplicity and the ability to model the slow, low-force processes that actually occur inside the cell."

Under the smaller forces, the researchers discovered a previously uncharacterized sequential loss of structure involving a fluctuation between two intermediates of similar complexity. The unfolding was demonstrated to involve many more steps than previously shown in experiments and more complex models. Because the model probes forces that are an order of magnitude smaller than those currently available to experimentalists, it can lead to a better understanding of biomolecular transitions within the cell.

"These small forces are beyond the current experimental techniques" says Pelizzola, "but I would expect the experiments to be possible in a few years." The model has been applied to other biomolecular processes with similarly detailed results.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Caraglio, A. Imparato, A. Pelizzola. Pathways of mechanical unfolding of FnIII10: Low force intermediates. The Journal of Chemical Physics, 2010; 133 (6): 065101 DOI: 10.1063/1.3464476

Cite This Page:

American Institute of Physics. "Model unfolds proteins gently." ScienceDaily. ScienceDaily, 18 October 2010. <www.sciencedaily.com/releases/2010/10/101005104353.htm>.
American Institute of Physics. (2010, October 18). Model unfolds proteins gently. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/10/101005104353.htm
American Institute of Physics. "Model unfolds proteins gently." ScienceDaily. www.sciencedaily.com/releases/2010/10/101005104353.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins