Featured Research

from universities, journals, and other organizations

'Shotgun' method allows scientists to dissect cells' sugar coatings

Date:
December 6, 2010
Source:
Emory University
Summary:
Sugar molecules coat every cell in our bodies and play critical roles in development and disease, yet the components of these "glycans" have been difficult for scientists to study, because of their complexity. Researchers now have adapted gene chip microarray technology to the study of glycans, with an approach they call "shotgun glycomics," a new chemical method for attaching a fluorescent dye to glycans purified from cells. The individual glycans are separated into tiny spots fixed to glass slides.

Sugar molecules coat every cell in our bodies and play critical roles in development and disease, yet the components of these "glycans" have been difficult for scientists to study, because of their complexity.

Related Articles


Researchers at Emory University School of Medicine have adapted gene chip microarray technology to the study of glycans, with an approach they call "shotgun glycomics." The Emory team has developed a new chemical method for attaching a fluorescent dye to glycans purified from cells. The individual glycans are separated into tiny spots fixed to glass slides.

The approach is described in an article published this week in the journal Nature Methods.

"These slides separate and display all the glycans in the cell, so that we can test what sticks to them," says senior author David Smith, PhD, professor of biochemistry and director of the Glycomics Center at Emory University School of Medicine. "However, the structures of the glycans are unknown. This is why we use the word 'shotgun' to describe our quasi-random approach of studying them."

The research team was led by Smith, first author Xuezheng Song, PhD, assistant professor of biochemistry, and Richard Cummings, PhD, chair of the Department of Biochemistry and co-director of the Glycomics Center.

As a demonstration of the technique's utility, the team used it to identify a molecule recognized by self-reactive antibodies present in the blood of most patients with Lyme disease. Lyme disease is caused by infection with Borrelia bacteria after a tick bite, but severe cases have features of an autoimmune response, triggered by the immune system's reaction to the bacteria.

"Being able to analyze glycans in this way may lead to new diagnostics for human autoimmune disorders, and perhaps, therapies to cleanse the body of self-reactive antibodies or inhibit their pathological attack on cells," Cummings says.

Completely dissecting glycans' structures is more difficult, compared with proteins or DNA, because glycans form branched structures in which not every link is chemically the same. Scientists have estimated that cells contain hundreds or thousands of different glycans, which can be attached to proteins or lipids. When using the shotgun approach, if scientists find that proteins from the body -- antibodies or toxins, for example -- bind to one particular glycan spot, they can then go back to that spot and determine its entire sequence, sifting out important glycans from the thousands on the slide.

"The sugars present on glycoproteins and glycolipids can contribute decisively to these molecules' functions," says Pamela Marino, PhD, who oversees glycobiology grants at the National Institutes of Health's National Institute of General Medical Sciences (NIGMS). "Understanding what information is encoded in these sugars and how they facilitate interactions with other proteins has been a major road block in deciphering the molecular language of glycans. This study, which is funded through the NIGMS EUREKA program for high risk research, has now provided proof of principle for an extremely novel 'shotgun' approach to interpreting this glycan code, and allows for examination of the role of glycans in infection and immunity."

The Emory team applied shotgun glycomics to red blood cells, tumor cells and brain-derived lipids. Cummings says the technique could be used to look for distinct sugar molecules displayed by cancer cells, for example. Identifying cancer-specific glycans could similarly lead to diagnostic tools or therapies, he says.

"A slide displaying glycans from a given cell type can be thought of as a book in the library, with the entire library constituting the human glycome," he says.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xuezheng Song, Yi Lasanajak, Baoyun Xia, Jamie Heimburg-Molinaro, Jeanne M Rhea, Hong Ju, Chunmei Zhao, Ross J Molinaro, Richard D Cummings, David F Smith. Shotgun glycomics: a microarray strategy for functional glycomics. Nature Methods, 2010; DOI: 10.1038/nmeth.1540

Cite This Page:

Emory University. "'Shotgun' method allows scientists to dissect cells' sugar coatings." ScienceDaily. ScienceDaily, 6 December 2010. <www.sciencedaily.com/releases/2010/12/101205202524.htm>.
Emory University. (2010, December 6). 'Shotgun' method allows scientists to dissect cells' sugar coatings. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/12/101205202524.htm
Emory University. "'Shotgun' method allows scientists to dissect cells' sugar coatings." ScienceDaily. www.sciencedaily.com/releases/2010/12/101205202524.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins