Featured Research

from universities, journals, and other organizations

How plants counteract against the shade of larger neighbours

Date:
December 19, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
Plants that "lose the battle" during competitiveness for light because they are shaded by larger neighbours, counteract. They adapt by rapid shoot elongation and stretch their leaves towards the sun. The molecular basis of this so-called shade avoidance syndrome had been unclarified to date. Research scientists from the Utrecht University in the Netherlands and the Ruhr University in Bochum have now been able to unravel a regulation pathway. A specific transport protein (PIN3) enables the accumulation of the plant hormone auxin, which plays an important role during this adaptation process, in the outer cell layers of the plants, thus enhancing the growth process. The international group of researchers, which includes the plant hormone specialist Prof. Stephan Pollmann from the RUB, has published its observations in the current edition of the Proceedings of the National Academy of Science PNAS.

Plants react to shading by adjacent plants by adapting their growth processes. In comparison with control plants, which grow in the sun, plants growing in the shade of other foliage are characterized by hyponasty, extended leaf stalks and increased shoot growth. Taken together, these processes are referred to as shade avoidance reaction or shade avoidance syndrome. They are initiated by a change in the fraction of far red in favour of red light, i.e. by a low far-red to red ratio.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Plants that "lose the battle" during competitiveness for light because they are shaded by larger neighbours, counteract. They adapt by rapid shoot elongation and stretch their leaves towards the sun. The molecular basis of this so-called shade avoidance syndrome had been unclarified to date. Research scientists from the Utrecht University in the Netherlands and the Ruhr University in Bochum have now been able to unravel a regulation pathway.

A specific transport protein (PIN3) enables the accumulation of the plant hormone auxin, which plays an important role during this adaptation process, in the outer cell layers of the plants, thus enhancing the growth process. The international group of researchers, which includes the plant hormone specialist Prof. Stephan Pollmann from the RUB, has published its observations in the current edition of the Proceedings of the National Academy of Science PNAS.

Suddenly in the shade: plants counteract

Plants often grow in very complex ecosystems, implying that they are in danger of being overgrown and thus shaded by adjacent larger neighbours. Plants have a number of adjustment mechanisms enabling them to register competing neighbours and enhance their competitive reaction. This ensures flexible reaction. Permanent perception of the light intensity and quality is imperative for this process. Prof. Pollmann explained that chlorophyll, the photosynthetic pigment in the leaves, absorbs almost all shades of blue and far red, only allowing dark red light to pass through the leaves. There is a significant change in the red to far-red ratio if a plant is shaded by foliage. If the light receptors in the plants register this change, they initiate a number of adjustment mechanisms in their growth and development program. Taken together these constitute the so-called shadow avoidance syndrome. They enhance the growth of shoots and the upward movement of the leaves (i.e. the hyponastic response).

Auxins play a significant role

Vascular plants produce an entire series of different small signalling molecules, so-called phytohormones, which regulate growth and differentiation processes. Auxins, one of the best-known plant growth factors, have an extremely wide spectrum of activity, and are particularly important. They play a decisive role in almost all plant growth processes, including the shade avoidance reaction. To date, the underlying mechanism was however not fully comprehended. Prof. Pollmann stated that it had been known that the effect of auxin is based on an interaction of auxin formation, transportation and signal transduction. These processes are all influenced by a low red to far-red ratio, but the exact mechanisms were not understood.

Protein distribution ensures directional the flow of hormones

A group of research scientists working under the auspices of the ecophysiologist Dr. Ronald Pierik at the Utrecht University (NL) has now managed to shed light on the matter and further clarify the growth processes in the shoots during the shade avoidance syndrome. They made an interesting observation, namely that shoot growth during a low red to far-red ratio is subject to an intact auxin perception mechanism and is dependent on the accumulation of auxin in the shoot. The auxin transport protein PIN-FORMED 3 (PIN3) is primarily responsible for this accumulation. The formation of PIN3 is enhanced when the ratio between red to far red is low. It primarily accumulates in the lateral endodermal cell walls. This distribution of PIN3 leads to an auxin flow towards the epidermal cell layers, which are responsible for the elongation growth of the shoot.

Comparison between plants in light and shade

This working hypothesis could be experimentally verified by collaboration with Prof. Stephan Pollmann, an expert for phytohormones at the Ruhr University in Bochum. Using state-of-the art mass spectrometry, he succeeded in quantifying and comparing the auxin content in wild-type and genetically created pin3 mutants, which are not capable of producing the transport protein. The shade avoidance syndrome was not present in the genetically altered plants without PIN3. Prof. Pollmann summarized that it is thus possible to deduce the important role of PIN3 controlled auxin accumulation during the shade avoidance reaction.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. H. Keuskamp, S. Pollmann, L. A. C. J. Voesenek, A. J. M. Peeters, R. Pierik. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1013457108

Cite This Page:

Ruhr-Universitaet-Bochum. "How plants counteract against the shade of larger neighbours." ScienceDaily. ScienceDaily, 19 December 2010. <www.sciencedaily.com/releases/2010/12/101217152518.htm>.
Ruhr-Universitaet-Bochum. (2010, December 19). How plants counteract against the shade of larger neighbours. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2010/12/101217152518.htm
Ruhr-Universitaet-Bochum. "How plants counteract against the shade of larger neighbours." ScienceDaily. www.sciencedaily.com/releases/2010/12/101217152518.htm (accessed September 20, 2014).

Share This



More Plants & Animals News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins