Featured Research

from universities, journals, and other organizations

New ideas enhance efficiency of wind turbines

Date:
December 22, 2010
Source:
Syracuse University
Summary:
One issue confronting the efficiency of wind as a promising renewable energy source is the wind itself -- specifically, its changeability. While the aerodynamic performance of a wind turbine is best under steady wind flow, the efficiency of the blades degrades when exposed to conditions such as wind gusts, turbulent flow, upstream turbine wakes and wind shear. Now, a new type of air-flow technology may soon increase the efficiency of large wind turbines under many different wind conditions.

One issue confronting the efficiency of wind as a promising renewable energy source is the wind itself -- specifically, its changeability. While the aerodynamic performance of a wind turbine is best under steady wind flow, the efficiency of the blades degrades when exposed to conditions such as wind gusts, turbulent flow, upstream turbine wakes and wind shear.

Now, a new type of air-flow technology may soon increase the efficiency of large wind turbines under many different wind conditions.

Researchers from Syracuse University's L.C. Smith College of Engineering and Computer Science (LCS) are testing new intelligent-systems-based active flow control methods with support from the U.S. Department of Energy through the University of Minnesota Wind Energy Consortium. The approach estimates the flow conditions over the blade surfaces from surface measurements, and then uses this information in an intelligent controller to implement real-time actuation on the blades to control the airflow and increase the overall efficiency of the wind turbine system. The work may also reduce excessive noise and vibration due to flow separation.

Initial simulation results completed by LCS researchers Guannan Wang, Basman El Hadidi, Jakub Walczak, Mark Glauser and Hiroshi Higuchi show that flow control applied on the outboard side of the blade beyond the half radius could significantly enlarge the overall operational range of the wind turbine with the same rated power output, or considerably increase the rated output power for the same level of operational range. The results suggest that either the overall operational range of the wind turbine could be effectively enlarged by 80 percent with the same rated power output, or the rated output power could be increased by 20 percent while maintaining the same level of operational range when the control is on. The optimal location for the actuator is found to be on the outboard of the blade beyond half of the radius.

The team is also investigating a characteristic airfoil in a new anechoic wind tunnel facility at SU to determine the airfoil lift and drag characteristics with appropriate flow control while exposed to large-scale flow unsteadiness. In addition, the effects of flow control on the noise spectrum of the wind turbine will be also assessed and measured in the anechoic chamber.

"It is exciting for us to be involved in the world-class wind energy consortium led by the University of Minnesota," says Glauser, professor of mechanical and aerospace engineering. "This is a wonderful opportunity to transition our expertise in intelligent systems for flow control, developed largely through support from the aerospace sector, to this important and growing area of the renewable energy sector.''

Scientists at the University of Minnesota are looking at another inefficiency with wind energy -- the drag, which is the resistance felt by the turbine blades as they beat the air. The team at the University of Minnesota's Saint Anthony Falls Lab (SAFL) looked at the effect of placing tiny grooves on turbine blades on drag reduction. The grooves are in the form of triangular riblets scored into a coating on the blade surface. They are so shallow (between 40 and 225 microns) that they can't be seen by the human eye -- leaving the blades looking perfectly smooth. Through wind-tunnel tests of 2.5-megawatt turbine airfoil surfaces (becoming one of the popular industry standards) and computer simulations, they have looked at the grooves' efficacy for various groove geometries and angles of attack (how the blades are positioned relative to the air stream).

University of Minnesota researchers Roger Arndt, Leonardo P. Chamorro and Fotis Sotiropoulos, believe that riblets will increase wind turbine efficiency by about 3 percent.

Both of these new ideas for enhancing the efficiency of wind turbines were recently presented at the American Physical Society Division of Fluid Dynamics meeting in Long Beach, Calif. On Nov. 21, the SU research team presented "Benefits of Active Flow Control for Wind Turbine Blades," and researchers at the University of Minnesota presented "On the skin friction drag reduction in large wind turbines using sharp V-grooved riblets."


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Cite This Page:

Syracuse University. "New ideas enhance efficiency of wind turbines." ScienceDaily. ScienceDaily, 22 December 2010. <www.sciencedaily.com/releases/2010/12/101220110856.htm>.
Syracuse University. (2010, December 22). New ideas enhance efficiency of wind turbines. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/12/101220110856.htm
Syracuse University. "New ideas enhance efficiency of wind turbines." ScienceDaily. www.sciencedaily.com/releases/2010/12/101220110856.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins