Featured Research

from universities, journals, and other organizations

The 'death switch' in sepsis also promotes survival

Date:
February 4, 2011
Source:
Lifespan
Summary:
Researchers have identified a protein that plays a dual role in the liver during sepsis. The protein, known as RIP1, acts both as a "death switch" and as a pro-survival mechanism. The ability to identify the triggers for these functions may play a key role in treating sepsis in the future.

Researchers from Rhode Island Hospital have identified a protein that plays a dual role in the liver during sepsis. The protein, known as RIP1, acts both as a "death switch" and as a pro-survival mechanism. The ability to identify the triggers for these functions may play a key role in treating sepsis in the future. The study is published online in advance of print in the journal Shock.

Sepsis is a serious condition in which the body is fighting a severe infection that has traveled through the bloodstream and is associated with a high mortality rate. Very few advances have been made to date on the biological mechanisms that cause septic morbidity and mortality. One focus, however, is Receptor Interacting Protein 1 (RIP1). This adaptor protein has been shown to have a signaling function for cells when it reacts with other receptors, and serves to switch an apoptotic cell death (a highly regulated form of death/cell suicide) to a necrotic death (a more disorderly death).

Alfred Ayala, Ph.D., a senior researcher in the division of surgical research within the department of surgery at Rhode Island Hospital and a professor at The Warren Alpert Medical School of Brown University, is the senior author of the study. Ayala says, "We initially hypothesized that RIP1 was involved in the alteration of the apoptotic death pathway to result in a kind of 'programmed necrosis' in the liver. What we actually found was an alternative role for RIP1 in the pathobiology of sepsis in the liver -- one that also promotes cellular survival."

Sam McNeal, the lead author on the study and a graduate student at the Alpert Medical School and Rhode Island Hospital, says, "In our animal models, we discovered that survival decreased when we suppressed RIP1. Our findings imply that RIP1's capacity to contribute to the onset of programmed cell death is not its central role in the septic animal and it appears to be necessary for survival of septic injury."

RIP1 is a multifunctional adaptor protein that has three domains: kinase, intermediate and death. The findings from this study indicate that the kinase domain of this protein is more involved in cell function than was previously thought. McNeal explains that this finding is important because knowledge of how the kinase domain is regulated may uncover new therapeutic targets that can be used to mitigate the effects of cellular/organ damage caused by trauma, shock, sepsis or other related conditions.

McNeal says, "The function of RIP1 is much more nuanced than we originally thought. We believe it plays a key role in cell function during sepsis, and if the pro-survival trigger can be identified, it could have major implications on how sepsis is treated in the future."

Other researchers in the study with Ayala and McNeal include Mark LeGolvan, D.O., of the department of pathology and Chun-Shiang Chung, Ph.D., of the department of surgery at Rhode Island Hospital and Alpert Medical School. The study was funded through a grant from the National Institute of General Medical Sciences (NIGMS), part of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Lifespan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sam I. McNeal, Mark P. LeGolvan, Chun-Shiang Chung, Alfred Ayala. The Dual Functions of Rip1 in Fas-Induced Hepatocyte Death During Sepsis. Shock, 2011; 1 DOI: 10.1097/SHK.0b013e31820b2db1

Cite This Page:

Lifespan. "The 'death switch' in sepsis also promotes survival." ScienceDaily. ScienceDaily, 4 February 2011. <www.sciencedaily.com/releases/2011/02/110202102746.htm>.
Lifespan. (2011, February 4). The 'death switch' in sepsis also promotes survival. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/02/110202102746.htm
Lifespan. "The 'death switch' in sepsis also promotes survival." ScienceDaily. www.sciencedaily.com/releases/2011/02/110202102746.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins