Featured Research

from universities, journals, and other organizations

Why some microbial genes are more promiscuous than others

Date:
March 16, 2011
Source:
National Evolutionary Synthesis Center (NESCent)
Summary:
While most organisms get their genes from their parents, bacteria also regularly pick up genes from more distant relatives. This ability to "steal" snippets of DNA from other species is responsible for the rapid spread of drug resistance among disease-causing bacteria. A new study of more than three dozen species - including the microbes responsible for pneumonia, ulcers and plague -- settles a longstanding debate about why bacteria are more likely to steal some genes than others. Bacteria are more likely to adopt 'loner' genes than genes that are well-connected, the study finds.

A new study of more than three dozen bacteria species -- including the microbes responsible for pneumonia, meningitis, stomach ulcers and plague -- settles a longstanding debate about why bacteria are more likely to steal some genes than others.

Related Articles


While most organisms get their genes from their parents just like people do, bacteria and other single-celled creatures also regularly pick up genes from more distant relatives. This ability to 'steal' snippets of DNA from other species -- known as lateral gene transfer -- is responsible for the rapid spread of drug resistance among disease-causing bacteria.

"By understanding why some genes are more likely to spread from one species to the next, we can better understand how new virulent bacterial strains emerge," said co-author Tal Pupko, a visiting scientist at the National Evolutionary Synthesis Center in Durham, NC.

Scientists have proposed several theories to explain why some bacterial genes are more likely to jump into other genomes. One theory, Pupko explained, is that it depends on what the gene does in the cell.

Genes involved in core functions, like converting RNA into protein, are much less likely to make the leap. "If a species already has the basic molecular machinery for transcription and translation, there's no advantage to taking in another set of genes that do the same thing," Pupko said.

Other studies suggest it's not what the gene does that matters, but how many proteins it interacts with -- a network researchers have dubbed the 'interactome.' Genes involved in transcription and translation, for example, must work in concert with many partners to do their job.

To find out which factor was more important -- what a gene does, or how connected it is -- the researchers looked for evidence of gene transfer in more than three dozen bacteria species, including a number of pathogens known to cause illness in people.

When they compared proteins with similar degrees of connectivity, the importance of gene function disappeared. "The reason some proteins are rarely acquired is because of how connected they are, not because of their function," said co-author Uri Gophna of Tel Aviv University.

Genes whose protein products rely on many partners to do their job are less likely to work properly in a new host, Gophna said. Transferring a highly connected gene into a new host is like importing a fax machine into a remote village, he explained. "While the machine itself is potentially useful, it needs a number of additional connections to work -- electricity, a phone line, a supply of paper, possibly a technician. If one of these is missing the machine becomes useless and ends up as junk."

Bacteria are more likely to adopt 'loner' genes than genes that are well-connected, the authors added. "If you think of the cell like a machine, it's much more difficult to exchange the hub of a machine than some of its accessories," Pupko said.

The scientists describe their findings in the April 2011 issue of Molecular Biology and Evolution.

Ofir Cohen of Tel Aviv University was also an author on this study.


Story Source:

The above story is based on materials provided by National Evolutionary Synthesis Center (NESCent). Note: Materials may be edited for content and length.


Journal Reference:

  1. O. Cohen, U. Gophna, T. Pupko. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Molecular Biology and Evolution, 2010; DOI: 10.1093/molbev/msq333

Cite This Page:

National Evolutionary Synthesis Center (NESCent). "Why some microbial genes are more promiscuous than others." ScienceDaily. ScienceDaily, 16 March 2011. <www.sciencedaily.com/releases/2011/03/110316161918.htm>.
National Evolutionary Synthesis Center (NESCent). (2011, March 16). Why some microbial genes are more promiscuous than others. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/03/110316161918.htm
National Evolutionary Synthesis Center (NESCent). "Why some microbial genes are more promiscuous than others." ScienceDaily. www.sciencedaily.com/releases/2011/03/110316161918.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins