Featured Research

from universities, journals, and other organizations

Scientists grow personalized collections of intestinal microbes

Date:
March 23, 2011
Source:
Washington University School of Medicine
Summary:
Scientists have shown they can grow and manipulate personalized collections of human intestinal microbes in the laboratory and pluck out particular microbes of interest. The research sets the stage for identifying new probiotics and evaluating in preclinical trials whether microbe transplants can restore the natural balance of intestinal bacteria in "sick" microbial communities.

Scientists at Washington University School of Medicine in St. Louis show they can grow and manipulate personalized collections of human intestinal microbes in the laboratory and pluck out particular microbes of interest. The research sets the stage for identifying new probiotics and evaluating in preclinical trials whether microbe transplants can restore the natural balance of intestinal bacteria in "sick" microbial communities.
Credit: Washington University in St. Louis

Each of us carries a unique collection of trillions of friendly microbes in our intestines that helps break down food our bodies otherwise couldn't digest.

This relationship between humans and their microbes is generally a healthy one, but changes to the mix of microbes in the digestive tract are suspected to play a role in obesity, malnutrition, Crohn's disease and other ailments.

Now, scientists at Washington University School of Medicine in St. Louis show they can grow and manipulate personalized collections of human intestinal microbes in the laboratory and pluck out particular microbes of interest.

The research sets the stage for identifying new probiotics and evaluating in preclinical trials whether microbe transplants can restore the natural balance of intestinal bacteria in "sick" microbial communities.

The research, by Jeffrey I. Gordon, MD, the Dr. Robert J. Glaser Distinguished University Professor and director of the Center for Genome Sciences & Systems Biology, and his team is reported online March 21 in the early online edition of the Proceedings of the National Academy of Sciences.

"This research helps set up a discovery pipeline in which we can deliberately manipulate collections of human intestinal microbes from people of different ages and cultures who are either healthy or sick," says Gordon, whose research first established a possible link between obesity and other facets of nutritional status and the mix of microbes that inhabit the intestine. "This gives us the opportunity to identify new groups of microbes that may be extremely beneficial in various therapeutic settings."

Researchers have grown bacterial microbes in the laboratory before, but until recently there's been no reliable way to know whether communities captured in a Petri dish mirror the extensive bacterial collections that exist in particular habitats of the body, such as the intestine.

"There are so many types of bacteria that live in different parts of our bodies, as well as substantial differences in these collections from person to person, that most scientists have thought we're probably missing a lot of the richness of microbial communities when we try to grow them in the laboratory," Gordon says. "But we found that the ability to successfully grow collections of gut microbes is much greater than had been expected."

For the study, the researchers obtained stool samples from two unrelated people. A portion of each sample was grown in the laboratory under strict "anaerobic" conditions because gut microbes live in an environment that lacks oxygen.

Then, they used the latest DNA sequencing technology to sequence a gene found in all microbes. This gene, 16S rDNA, functions as a barcode of life to determine "who" is there and can be used to inventory the various species present in a microbial community.

In all, they discovered that most of the different groups of intestinal bacteria found in an individual also were present in their corresponding bacterial collections that were grown, or cultured, in the laboratory.

"We were able to capture a remarkable proportion of the diversity of each person's intestinal bacteria in the samples we grew in the laboratory," says first author Andrew Goodman, PhD, a former postdoctoral student in Gordon's lab who is now on the faculty at Yale University.

The researchers then transplanted collections of microbial communities from the cultured and uncultured samples into the intestinal tracts of formerly germ-free mice. The mice, in essence, acquired a collection of gut microbes that mimicked the community in the original human donor.

By analyzing these "humanized" mice, the researchers demonstrated that both cultured and uncultured gut microbial communities from the same person behaved in the same manner when the mice were switched from their typical diet -- a low-fat, plant-based mouse chow -- to a standard western diet that is high in fat and sugar. Some species became more dominant and others less so, but the changes were virtually identical, regardless of whether the original sample was cultured or not.

The researchers also demonstrated they could split apart an entire community of cultured intestinal microbes and create a "personalized" library of bacterial species.

Microbes that react strongly to changes in diet or exposure to antibiotics, for example, can be retrieved from these libraries and their genomes can be sequenced to help understand why they respond as they do. Then, these microbes can be reunited with other members of a microbial community in germ-free mice to create more simplified models of human gut communities.

Gordon envisions that this approach makes it possible to obtain personalized microbial communities from people around the world who consume different diets and from individuals who are obese or malnourished or who have Crohn's or other diseases.

"This gives us the ability to test the contributions of specific microbes or groups of microbes and their influence on a person's health," Gordon explains. "One central question we hope to answer is how much of a person's overall nutritional status can be ascribed to their gut microbes and whether nutritional status can be improved by therapeutic interventions directed to gut microbial communities."

The research is funded by the National Institutes of Health and the Crohn's and Colitis Foundation of America.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences Early Edition, March 21, 2011 DOI: 10.1073/pnas.1102938108

Cite This Page:

Washington University School of Medicine. "Scientists grow personalized collections of intestinal microbes." ScienceDaily. ScienceDaily, 23 March 2011. <www.sciencedaily.com/releases/2011/03/110321162001.htm>.
Washington University School of Medicine. (2011, March 23). Scientists grow personalized collections of intestinal microbes. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/03/110321162001.htm
Washington University School of Medicine. "Scientists grow personalized collections of intestinal microbes." ScienceDaily. www.sciencedaily.com/releases/2011/03/110321162001.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins