Science News

... from universities, journals, and other research organizations

An Ancestral Link Between Genetic and Environmental Sex Determination

Mar. 25, 2011 — Researchers from Osaka University and the National Institute for Basic Biology, Japan, have found a highly significant connection between the molecular mechanisms underlying genetic and environmental sex determination. The scientists report in the open-access journal PLoS Genetics the identification of a gene responsible for the production of males during environmental sex determination in the crustacean Daphnia.


Share This:

Ways in which an individual organism's sex is determined are diverse among animal lineages and can be broadly divided into two major categories: genetic and environmental. In genetic sex determination (GSD), sex-specific differentiation results from intrinsic genetic differences between males and females, whereas environmental sex determination (ESD) relies upon environmental signals to induce male or female sex determination. In contrast to GSD models, the genetics of ESD organisms are poorly understood.

The researchers cloned Doublesex (Dsx) genes from Daphnia magna, a freshwater brachiopod crustacean that clones itself to produce males in response to certain environmental cues. The Dsx genes play an important role in controlling sexual differences in organisms using GSD such as nematodes, insects, and vertebrates. Knocking out one particular Dsx gene, DapmaDsx1, in male embryos resulted in the production of female traits including ovarian maturation, whereas ectopic expression of DapmaDsx1 in female embryos resulted in the development of male-like phenotypes.

The researchers infer that there is an ancient, previously unidentified link between genetic and environmental sex determination. This study was confined only to the role of Dsx in ESD, so it would be highly desirable to establish the link between the environmental signal and Dsx expression. However, this work lends support to the "Doublesex hypothesis" of sex determination, in which many different sorts of upstream regulatory pathways could converge on Dsx-family genes, which would serve as the basis of sexual differentiation mechanisms across the animal kingdom.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Public Library of Science, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Doggy Genes

Molecular biologists have completely sequenced the first dog genome. Understanding how genetics plays a role in canine diseases could lead to new. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?