Featured Research

from universities, journals, and other organizations

Novel compounds for fighting against parasitic diseases

Date:
April 5, 2011
Source:
Heidelberg Institute for Theoretical Studies
Summary:
Parasites of the Trypanosomatidae family cause a number of serious human diseases. Researchers have now published the identification of novel anti-parasitic compounds targeting an enzyme unique to the parasites. These compounds are promising for the development of drugs with fewer side-effects than current medical treatments.

Virtual screening identifies non-folate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase.
Credit: Ferrari et al.

Trypanosomatid parasites cause diseases like African sleeping sickness, Chagas' disease and leishmaniasis. Leishmaniasis affects about 12 million people worldwide, mostly in developing countries. Current drug treatments are inadequate due to drug toxicity and resistance.

Now, a group of European scientists has discovered new compounds that may help to fight these diseases more effectively. The project was carried out by research groups headed by Maria Paola Costi (University of Modena and Reggio Emilia, Italy), Rebecca Wade (HITS, Heidelberg Institute for Theoretical Studies, Germany) and Paul Michels (De Duve Institute , Belgium). It was supported by the Cassa di Risparmio di Modena Foundation. The research results have been published in the Journal of Medicinal Chemistry.

Trypanosomatids require folates and biopterins. These are reduced by the enzymes dihydrofolate reductase (DHFR) and pteridine reductase (PTR1). When DHFR is inhibited, DNA replication is impaired, resulting in cell death. However in trypanosomatids, PTR1 is overexpressed when DHFR is inhibited, and PTR1 can take on the role of DHFR by reducing folates, ensuring parasite survival. For the treatment of anti-parasitic diseases, it is thus necessary to block two metabolic pathways by simultaneously inhibiting DHFR and PTR1 by a single drug or a combination of two specific inhibitors. PTR1 is not present in humans and is thus an excellent target for the design of specific compounds that target the parasite.

In this project, the scientists used a virtual screening approach combined with experimental screening methodologies, to identify non-folate-like inhibitors of Leishmania PTR1. Optimization was performed in two rounds of structure-based drug design cycles to improve specificity for PTR1 and selectivity against human DHFR, resulting in 18 drug-like molecules with low micromolar affinities and high in-vitro specificity profiles. Assays of efficacy in cultured Leishmania cells showed six compounds that were active in combination with a DHFR inhibitor. One of these was also effective alone. Several of these compounds showed low toxicity profiles, and one of them is a known drug approved for treatment of diseases of the central nervous system, suggesting potential for label extension of this compound as an anti-parasitic drug candidate.


Story Source:

The above story is based on materials provided by Heidelberg Institute for Theoretical Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefania Ferrari, Federica Morandi, Domantas Motiejunas, Erika Nerini, Stefan Henrich, Rosaria Luciani, Alberto Venturelli, Sandra Lazzari, Samuele Calò, Shreedhara Gupta, Veronique Hannaert, Paul A. M. Michels, Rebecca C. Wade, M. Paola Costi. Virtual Screening Identification of Nonfolate Compounds, Including a CNS Drug, as Antiparasitic Agents Inhibiting Pteridine Reductase. Journal of Medicinal Chemistry, 2011; 54 (1): 211 DOI: 10.1021/jm1010572

Cite This Page:

Heidelberg Institute for Theoretical Studies. "Novel compounds for fighting against parasitic diseases." ScienceDaily. ScienceDaily, 5 April 2011. <www.sciencedaily.com/releases/2011/04/110404084808.htm>.
Heidelberg Institute for Theoretical Studies. (2011, April 5). Novel compounds for fighting against parasitic diseases. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/04/110404084808.htm
Heidelberg Institute for Theoretical Studies. "Novel compounds for fighting against parasitic diseases." ScienceDaily. www.sciencedaily.com/releases/2011/04/110404084808.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins