Featured Research

from universities, journals, and other organizations

Water molecules characterize the structure of DNA genetic material

Date:
April 27, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
Water molecules surround the genetic material DNA in a very specific way. Scientists have discovered that, on the one hand, the texture of this hydration shell depends on the water content and, on the other hand, actually influences the structure of the genetic substance itself. These findings are not only important in understanding the biological function of DNA; they could also be used for the construction of new DNA-based materials.

This is a schematic diagram of a DNA strand with adherent water molecules.
Credit: Picture created by using the picture 1HQ7.pdb from the "Protein Data Bank"

Water molecules surround the genetic material DNA in a very specific way. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have discovered that, on the one hand, the texture of this hydration shell depends on the water content and, on the other hand, actually influences the structure of the genetic substance itself. These findings are not only important in understanding the biological function of DNA; they could also be used for the construction of new DNA-based materials.

The DNA's double helix never occurs in isolation; instead, its entire surface is always covered by water molecules which attach themselves with the help of hydrogen bonds. But the DNA does not bind all molecules the same way. "We've been able to verify that some of the water is bound stronger whereas other molecules are less so," notes Dr. Karim Fahmy, Head of the Biophysics Division at the Institute of Radiochemistry. This is, however, only true if the water content is low. When the water sheath swells, these differences are adjusted and all hydrogen bonds become equally strong. This, in turn, changes the geometry of the DNA strand: The backbone of the double helix, which consists of sugar and phosphate groups, bends slightly. "The precise DNA structure depends on the specific amount of water surrounding the molecule," summarizes Dr. Fahmy.

Analyses of the genetic material were conducted at the HZDR by the doctoral candidate Hassan Khesbak. The DNA, which came from salmon testes, was initially prepared in thin films and then wetted with ultrafine doses of water within a few seconds. With the help of infrared spectroscopy, Hassan Khesbak was able to verify that the strength of hydrogen bonds varies and that water molecules exhibit different rest periods in such configurations. Oscillations of the water bonds in the hydration shell of the double helix can be excited by infrared light. The higher the frequency of the oscillation, the looser the hydrogen bond. It became apparent that the sugar components and the base pairs create particularly strong bonds with the water sheath while the bonds between the water and the phosphate groups are weaker. The results were published just recently in the Journal of the American Chemical Society.

"DNA is, thus, a responsive material," explains Karim Fahmy. "By this, we refer to materials which react dynamically to varying conditions. The double helix structure, the strength of the hydrogen bonds, and even the DNA volume tend to change with higher water contents." Already today, genetic material is an extraordinarily versatile and interesting molecule for so-called DNA nanotechnology. Because with DNA it is possible to realize highly ordered structures with new optical, electronic, and mechanical properties at tiny dimensions which are also of interest for the HZDR. The bound water sheath is not just an integral part of such structures. It can also assume a precise switching function because the results indicate that increasing the hydration shell by only two water molecules per phosphate group may cause the DNA structure to "fold" instantly. Such water dependent switching processes might be able to control, for example, the release of active agents from DNA-based materials.

It does not come as a complete surprise that the water sheath of the genetic material is also of great relevance to the natural biological function of DNA. Because every biomolecule which is bound to the DNA has to first displace the water sheath. The Dresden scientists have analyzed this process for the peptide indolicidin. This antimicrobial protein is less structured and very flexible. That it still "identifies" the double helix so precisely is due to the fact that highly structured water molecules are released when it coalesces with the genetic material. The water sheath's restructuring, which is actually an energetic advantage, increases the binding of the active agent. Such details are really important for the development of DNA-binding drugs, for example, in cancer therapy because they can be ascertained with the method developed at the HZDR.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hassan Khesbak, Olesya Savchuk, Satoru Tsushima, Karim Fahmy. The Role of Water H-Bond Imbalances in B-DNA Substate Transitions and Peptide Recognition Revealed by Time-Resolved FTIR Spectroscopy. Journal of the American Chemical Society, 2011; 133 (15): 5834 DOI: 10.1021/ja108863v

Cite This Page:

Helmholtz Association of German Research Centres. "Water molecules characterize the structure of DNA genetic material." ScienceDaily. ScienceDaily, 27 April 2011. <www.sciencedaily.com/releases/2011/04/110426091122.htm>.
Helmholtz Association of German Research Centres. (2011, April 27). Water molecules characterize the structure of DNA genetic material. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/04/110426091122.htm
Helmholtz Association of German Research Centres. "Water molecules characterize the structure of DNA genetic material." ScienceDaily. www.sciencedaily.com/releases/2011/04/110426091122.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins