Featured Research

from universities, journals, and other organizations

Tree rings tell a 1,100-year history of El Niño

Date:
May 8, 2011
Source:
University of Hawaii at Manoa
Summary:
Tree-ring records from North America give a continuous history of variations in El Niño intensity over the past 1,100 years and can be used to help climate models predict more reliably how El Niño will change in the face of global warming, according to a new study.

Bristlecone trees, such as this over a thousand-year-old tree in the Great Basin National Park, contributed to the tree-ring record on El Niño.
Credit: Image courtesy International Pacific Research Center

El Niño and its partner La Niña, the warm and cold phases in the eastern half of the tropical Pacific, play havoc with climate worldwide. Predicting El Niño events more than several months ahead is now routine, but predicting how it will change in a warming world has been hampered by the short instrumental record. An international team of climate scientists has now shown that annually resolved tree-ring records from North America, particularly from the US Southwest, give a continuous representation of the intensity of El Niño events over the past 1100 years and can be used to improve El Niño prediction in climate models.

Related Articles


The study, spearheaded by Jinbao Li, International Pacific Research Center, University of Hawai'i at Manoa, is published in the May 6 issue of Nature Climate Change.

Tree rings in the US Southwest, the team found, agree well with the 150-year instrumental sea surface temperature records in the tropical Pacific. During El Niño, the unusually warm surface temperatures in the eastern Pacific lead to changes in the atmospheric circulation, causing unusually wetter winters in the US Southwest, and thus wider tree rings; unusually cold eastern Pacific temperatures during La Niña lead to drought and narrower rings. The tree-ring records, furthermore, match well existing reconstructions of the El Niño-Southern Oscillation and correlate highly, for instance, with δ18O isotope concentrations of both living corals and corals that lived hundreds of years ago around Palmyra in the central Pacific.

"Our work revealed that the towering trees on the mountain slopes of the US Southwest and the colorful corals in the tropical Pacific both listen to the music of El Niño, which shows its signature in their yearly growth rings," explains Li. "The coral records, however, are brief, whereas the tree-ring records from North America supply us with a continuous El Niño record reaching back 1100 years."

The tree rings reveal that the intensity of El Niño has been highly variable, with decades of strong El Niño events and decades of little activity. The weakest El Niño activity happened during the Medieval Climate Anomaly in the 11th century, whereas the strongest activity has been since the 18th century.

These different periods of El Niño activity are related to long-term changes in Pacific climate. Cores taken from lake sediments in the Galapagos Islands, northern Yucatan, and the Pacific Northwest reveal that the eastern-central tropical Pacific climate swings between warm and cool phases, each lasting from 50 to 90 years. During warm phases, El Niño and La Niña events were more intense than usual. During cool phases, they deviated little from the long-term average as, for instance, during the Medieval Climate Anomaly when the eastern tropical Pacific was cool.

"Since El Niño causes climate extremes around the world, it is important to know how it will change with global warming," says co-author Shang-Ping Xie. "Current models diverge in their projections of its future behavior, with some showing an increase in amplitude, some no change, and some even a decrease. Our tree-ring data offer key observational benchmarks for evaluating and perfecting climate models and their predictions of the El Niño-Southern Oscillation under global warming."

This research was funded by the National Science Foundation, National Oceanic and Atmospheric Administration, Japan Agency for Marine-Earth Science and Technology, National Basic Research Program of China, and the National Natural Science Foundation of China.


Story Source:

The above story is based on materials provided by University of Hawaii at Manoa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jinbao Li, Shang-Ping Xie, Edward R. Cook, Gang Huang, Rosanne D'Arrigo, Fei Liu, Jian Ma, Xiao-Tong Zheng. Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change, 2011; 1 (2): 114 DOI: 10.1038/nclimate1086

Cite This Page:

University of Hawaii at Manoa. "Tree rings tell a 1,100-year history of El Niño." ScienceDaily. ScienceDaily, 8 May 2011. <www.sciencedaily.com/releases/2011/05/110506093107.htm>.
University of Hawaii at Manoa. (2011, May 8). Tree rings tell a 1,100-year history of El Niño. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/05/110506093107.htm
University of Hawaii at Manoa. "Tree rings tell a 1,100-year history of El Niño." ScienceDaily. www.sciencedaily.com/releases/2011/05/110506093107.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins