Featured Research

from universities, journals, and other organizations

Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'super bugs'

Date:
June 17, 2011
Source:
Federation of American Societies for Experimental Biology
Summary:
"Super bugs," which can cause wide-spread disease and may be resistant to most, if not all, conventional antibiotics, still have their weaknesses. A team of Canadian scientists discovered that specific mixtures of antimicrobial agents presented in lipid (fatty) mixtures can significantly boost the effectiveness of those agents to kill the resistant bacteria.

Escherichia coli.
Credit: Tomasz Niewęgłowski / Fotolia

"Super bugs," which can cause wide-spread disease and may be resistant to most, if not all, conventional antibiotics, still have their weaknesses. A team of Canadian scientists discovered that specific mixtures of antimicrobial agents presented in lipid (fatty) mixtures can significantly boost the effectiveness of those agents to kill the resistant bacteria.

Related Articles


This discovery was published online in The FASEB Journal.

According to a researcher involved in the study, Richard Epand, Ph.D. from the Department of Biochemistry and Biomedical Science at McMaster University in Hamilton, Ontario, Canada, "This study may contribute to overcoming the lethal effects of drug resistant bacteria that is becoming an increasing clinical problem, particularly in hospitals."

To make their discovery, Epand and colleagues conducted experiments using groups of mice infected with lethal doses of multidrug-resistant Escherichia coli (E. coli). Researchers then treated the mice with conventional drug combinations or drug combinations encapsulated in lipid mixtures. They found that certain lipid mixtures caused the drugs to act together in a synergistic manner. In this form, the drugs were much more effective in increasing the survival rate of the mice because they overcame the cellular mechanisms used by these bacteria to defeat therapeutic agents.

This study also demonstrated a novel use of a new family of antimicrobial agents called oligo-acyl-lysyls, which have the potential to be combined with other drugs and lipid mixtures with similar properties to yield a platform for other specific applications.

"As we've seen in the recent E. coli outbreak in Germany, bacteria can mutate to become super bugs that resist antibiotics," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Thanks to this new, lipid-based antibiotic therapy, multidrug-resistant bacteria may begin to look more like Jimmy Olsen and a lot less like Superman."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Sarig, D. Ohana, R. F. Epand, A. Mor, R. M. Epand. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. The FASEB Journal, 2011; DOI: 10.1096/fj.11-183764

Cite This Page:

Federation of American Societies for Experimental Biology. "Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'super bugs'." ScienceDaily. ScienceDaily, 17 June 2011. <www.sciencedaily.com/releases/2011/06/110616193740.htm>.
Federation of American Societies for Experimental Biology. (2011, June 17). Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'super bugs'. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2011/06/110616193740.htm
Federation of American Societies for Experimental Biology. "Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'super bugs'." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616193740.htm (accessed November 1, 2014).

Share This



More Plants & Animals News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins