Featured Research

from universities, journals, and other organizations

Biologist discovers key regulators for biofilm development

Date:
June 25, 2011
Source:
Syracuse University
Summary:
Biologists have discovered that a complex cascade of enhancer binding proteins is responsible for turning on genes that initiate the formation of a biofilm in bacteria.

They can be found everywhere -- organized communities of bacteria sticking to surfaces both inside and outside the body. These biofilms are responsible for some of the most virulent, antibiotic-resistant infections in humans; however, scientific understanding of how these communities develop is lacking.

A recent study led by a Syracuse University biologist sheds new light on the process. The scientists discovered that a complex cascade of enhancer binding proteins (EBPs) is responsible for turning on genes that initiate the formation of a biofilm. The study was published June 13 in the Proceedings of the National Academy of Sciences, one of the world's most-cited multidisciplinary scientific serials. The National Science Foundation is funding the research.

"We've discovered a complex regulatory cascade of EBPs that is designed to be highly responsive to environmental signals," says Anthony Garza, associate professor of biology in SU's College of Arts and Sciences and corresponding author for the study. "The regulatory circuit we identified is very different from that which has previously been seen." Garza's research team includes scientists from the University of Miami School of Medicine, the University of Wisconsin-Madison, and Stanford University School of Medicine.

Garza's team discovered that the regulatory network that signals biofilm development is quite complex and akin to that which is normally found in higher organisms. "Bacterial cells that form biofilms require cooperative behavior similar to cells in more complex organisms," he says. "We knew EBPs were important in initiating biofilm development, and that there was a connection between EBPs and specific biofilm genes. But we didn't know how the EBP regulatory circuit was put together." Garza's team has also begun to identify the signals that activate the EBP circuitry and the corresponding biofilm genes. Those studies are forthcoming.

The work to uncover how biofilms are genetically initiated is key to developing new ways to prevent and/or treat infected surfaces, Garza says. Bacteria are stimulated to organize into biofilms by several mechanisms, including starvation, high nutrient levels, tissue recognition, and quorum or cell-density signaling. Because it takes a lot of energy to organize, bacteria need to be certain conditions are optimal before initiating the biofilm process.

For example, Garza explains, bacterial cells can recognize desirable host tissue, such as lung tissue. Once there, the cells look around to see if enough of their buddies are around to form a biofilm. In this case, both tissue recognition and quorum signaling is at work in initiating the process.

"Unfortunately, biofilms can be up to a thousand times more antibiotic resistant than free-living bacteria," Garza says. "Once established, biofilms are extremely resistant to killing agents -- chemicals, cleaners, antibiotics. The key to preventing their development is in understanding how they get started."


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. M. Giglio, N. Caberoy, G. Suen, D. Kaiser, A. G. Garza. PNAS Plus: A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1105876108

Cite This Page:

Syracuse University. "Biologist discovers key regulators for biofilm development." ScienceDaily. ScienceDaily, 25 June 2011. <www.sciencedaily.com/releases/2011/06/110624163200.htm>.
Syracuse University. (2011, June 25). Biologist discovers key regulators for biofilm development. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/06/110624163200.htm
Syracuse University. "Biologist discovers key regulators for biofilm development." ScienceDaily. www.sciencedaily.com/releases/2011/06/110624163200.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins