Featured Research

from universities, journals, and other organizations

Ancient algae: Genetically engineering a path to new energy sources?

Date:
July 13, 2011
Source:
Texas A&M AgriLife Communications
Summary:
A team of researchers is making a connection between prehistoric times and the present -- ancient algae that can produce their own biofuel -- that could result in genetically creating a replacement for oil and coal shale deposits. Their discovery could have fundamental implications for the future of Earth's energy supplies.

Botryococcus braunii, Race B, is an ancient, colony-forming green alga that has attracted interest because it accumulates large amounts of high-value, petrochemical replacement oils. The oil oozing from the algal colony is evident in this picture.
Credit: Photograph courtesy of Taylor Weiss, Andreas Holzenburg, Stanislav Vitha and Timothy P. Devarenne at Texas A&M University

A team of researchers led by University of Kentucky College of Agriculture Professor Joe Chappell is making a connection between prehistoric times and the present -- ancient algae that can produce their own biofuel -- that could result in genetically creating a replacement for oil and coal shale deposits. Their discovery could have fundamental implications for the future of Earth's energy supplies.

Related Articles


Tom Niehaus, completing his doctorate in the Chappell laboratory; Shigeru Okada, a sabbatical professor from the aquatic biosciences department at the University of Tokyo; Tim Devarenne, a UK graduate and now professor of biochemistry and biophysics at Texas A&M University; and UK colleagues, Chappell, David Watt, professor of cellular and molecular biochemistry (College of Medicine) and his post-doctoral associate Vitaliy Sviripa report their latest research in the Proceedings of the National Academy of Sciences (PNAS). Their findings go well beyond the basic science dealing with the origins of oil and coal.

While scientists previously established that oil and coal have their roots in the organisms that lived on the planet over 500 million years ago, one micro-organism directly contributed to these natural resources. That organism is a species of algae called Botryococcus braunii, which left behind its chemical fingerprints -- an oil that over geological time has turned into oil and coal shale deposits.

"Even more exciting is that this unique alga, B. braunii, still exists today and has been the target of studies from the large chemical and petrochemical industries," said Chappell.

B. braunii are very slow growing algae, so the organism is not necessarily a good source for biofuels. However, if scientists can capture its genetic blueprints for the biosynthesis of these high value oils, then these genes could be used to generate alternative production platforms.

This team of investigators isolated the necessary genes, characterized the biochemical traits encoded by these genes, and then genetically engineered yeast to produce this very high-value oil. This work has provided the first example of recreating a true direct replacement for oil and coal shale deposits.

Chappell said, "This represents the culmination of an outstanding effort to understand a fundamental process that has direct ramifications for a real-world problem -- how are we going to generate a truly renewable biofuel supply?"

Devarenne added, "This study identifies a very remarkable molecular mechanism for the production of hydrocarbons that, as far as we can tell, is not found in any other organism. Thus, it offers a unique insight into how hydrocarbons were produced hundreds of millions of years ago."


Story Source:

The above story is based on materials provided by Texas A&M AgriLife Communications. The original article was written by Paul Schattenberg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tom D. Niehaus, Shigeru Okada, Timothy P. Devarenne, David S. Watt, Vitaliy Sviripa, Joe Chappell. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1106222108

Cite This Page:

Texas A&M AgriLife Communications. "Ancient algae: Genetically engineering a path to new energy sources?." ScienceDaily. ScienceDaily, 13 July 2011. <www.sciencedaily.com/releases/2011/07/110711164533.htm>.
Texas A&M AgriLife Communications. (2011, July 13). Ancient algae: Genetically engineering a path to new energy sources?. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/07/110711164533.htm
Texas A&M AgriLife Communications. "Ancient algae: Genetically engineering a path to new energy sources?." ScienceDaily. www.sciencedaily.com/releases/2011/07/110711164533.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins