Featured Research

from universities, journals, and other organizations

Cell division: How condensin keeps chromosome arms folded

Date:
July 18, 2011
Source:
European Molecular Biology Laboratory
Summary:
Scientists have discovered how condensin keeps chromosome arms folded and easy-to-transport during cell division, potentially acting as a cord-stopper.

Artists impression of condensin loops around several strands of DNA, keeping it coiled up and easier to transport.
Credit: EMBL/ P. Riedinger

As any rock-climber knows, trailing a long length of rope behind you is not easy. A dangling length of rope is unwieldy and hard to manoeuvre, and can get tangled up or stuck on an outcropping. Cells face the same problem when dragging chromosomes apart during cell division. The chromosomes are pulled by their middle -- the centromere -- their arms trailing along behind. Just like climbers carry their rope coiled up, cells make the chromosome arms easier to pull by folding them into short, stiffer structures.

Related Articles


In a study published online July 18 in Nature Structural and Molecular Biology, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered how a protein complex called condensin keeps chromosome arms folded and easy-to-transport, potentially acting as a cord-stopper.

"This is the first step towards understanding how the largest molecule in the cell can be organised into something that can be handled during cell division" says Christian Hδring, who led the work.

Sara Cuylen, a PhD student in Hδring's lab, first discovered that, in the test tube, condensin forms a ring around the DNA in a chromosome arm. After confirming that it does the same in live yeast cells, Cuylen cut the condensin rings open. She found that the centromeres still moved as expected, but the chromosome arms lagged behind, preventing the cell from dividing properly. It seems the condensin ring encircles two different regions of a chromosome arm, like a cord-stopper bringing together a looped length of rope. The condensin ring can slide along the DNA 'rope' to some extent, but the EMBL scientists also found evidence that, like a cord-stopper when the button is released, condensin may also be able to stop sliding, attaching itself to specific parts of the chromosome arm.

Next, Hδring and colleagues plan to investigate just how chromosome arms are looped into and released from condensin rings. The whole process is likely to be the same in our own cells, the scientists say, as the overall architecture of our condensin and chromosomes is the same as yeast's.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sara Cuylen, Jutta Metz, Christian H Haering. Condensin structures chromosomal DNA through topological links. Nature Structural & Molecular Biology, 2011; DOI: 10.1038/nsmb.2087

Cite This Page:

European Molecular Biology Laboratory. "Cell division: How condensin keeps chromosome arms folded." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110718101159.htm>.
European Molecular Biology Laboratory. (2011, July 18). Cell division: How condensin keeps chromosome arms folded. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/07/110718101159.htm
European Molecular Biology Laboratory. "Cell division: How condensin keeps chromosome arms folded." ScienceDaily. www.sciencedaily.com/releases/2011/07/110718101159.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins