Featured Research

from universities, journals, and other organizations

Cell division: How condensin keeps chromosome arms folded

Date:
July 18, 2011
Source:
European Molecular Biology Laboratory
Summary:
Scientists have discovered how condensin keeps chromosome arms folded and easy-to-transport during cell division, potentially acting as a cord-stopper.

Artists impression of condensin loops around several strands of DNA, keeping it coiled up and easier to transport.
Credit: EMBL/ P. Riedinger

As any rock-climber knows, trailing a long length of rope behind you is not easy. A dangling length of rope is unwieldy and hard to manoeuvre, and can get tangled up or stuck on an outcropping. Cells face the same problem when dragging chromosomes apart during cell division. The chromosomes are pulled by their middle -- the centromere -- their arms trailing along behind. Just like climbers carry their rope coiled up, cells make the chromosome arms easier to pull by folding them into short, stiffer structures.

Related Articles


In a study published online July 18 in Nature Structural and Molecular Biology, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered how a protein complex called condensin keeps chromosome arms folded and easy-to-transport, potentially acting as a cord-stopper.

"This is the first step towards understanding how the largest molecule in the cell can be organised into something that can be handled during cell division" says Christian Hδring, who led the work.

Sara Cuylen, a PhD student in Hδring's lab, first discovered that, in the test tube, condensin forms a ring around the DNA in a chromosome arm. After confirming that it does the same in live yeast cells, Cuylen cut the condensin rings open. She found that the centromeres still moved as expected, but the chromosome arms lagged behind, preventing the cell from dividing properly. It seems the condensin ring encircles two different regions of a chromosome arm, like a cord-stopper bringing together a looped length of rope. The condensin ring can slide along the DNA 'rope' to some extent, but the EMBL scientists also found evidence that, like a cord-stopper when the button is released, condensin may also be able to stop sliding, attaching itself to specific parts of the chromosome arm.

Next, Hδring and colleagues plan to investigate just how chromosome arms are looped into and released from condensin rings. The whole process is likely to be the same in our own cells, the scientists say, as the overall architecture of our condensin and chromosomes is the same as yeast's.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sara Cuylen, Jutta Metz, Christian H Haering. Condensin structures chromosomal DNA through topological links. Nature Structural & Molecular Biology, 2011; DOI: 10.1038/nsmb.2087

Cite This Page:

European Molecular Biology Laboratory. "Cell division: How condensin keeps chromosome arms folded." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110718101159.htm>.
European Molecular Biology Laboratory. (2011, July 18). Cell division: How condensin keeps chromosome arms folded. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/07/110718101159.htm
European Molecular Biology Laboratory. "Cell division: How condensin keeps chromosome arms folded." ScienceDaily. www.sciencedaily.com/releases/2011/07/110718101159.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins