Featured Research

from universities, journals, and other organizations

New technology could capture ammonia from liquid manure

Date:
August 11, 2011
Source:
Texas A&M AgriLife Communications
Summary:
A new method of extracting ammonium from liquid animal manure could be exciting news for both confined animal operations and environmental groups, according to an engineer. The method uses gas-permeable membrane technology that tests have shown could remove 50 percent of the dissolved ammonium in liquid manure in 20 days.

Dr. Saqib Mukhtar, (foreground) Texas AgriLife Extension Service engineer, and Dr. MD Borhan, Texas AgriLife Research scientist, pose with a lab-bench scale test of a process that can extract 50 percent of the dissolved ammonium in liquid manure in 20 days.
Credit: Texas AgriLife Extension Service photo by Robert Burns

Though it may not sound very glamorous, a new method of extracting ammonium from liquid animal manure could be exciting news for both confined animal operations and environmental groups, according to a Texas AgriLife Extension Service engineer.

Related Articles


The method uses gas-permeable membrane technology that tests have shown could remove 50 percent of the dissolved ammonium in liquid manure in 20 days. The removed ammonium is "not scrubbed but captured," said Dr. Saqib Mukhtar, AgriLife Extension engineer and interim associate department head of the Texas A&M University department of biological and agricultural engineering.

By captured, Mukhtar means, the ammonium is concentrated as ammonia sulfate compound, which as commercial fertilizer could potentially offset the cost of the removal process.

Though still in the lab-bench test stage, the technology shows great promise to solve a long-standing, expensive well-documented problem that confined-animal feeding operations such as dairies and feedlots face daily, Mukhtar said.

"Excessive ammonia emissions from animal feeding operations are considered a source of odor and environmental pollution," Mukhtar said. "Once emitted, ammonia may contribute to formation of fine airborne particulates in the presence of certain acidic compounds in the atmosphere."

Also, ammonia emissions from improperly managed manure systems may contaminate groundwater and cause excessive vegetative growth in lakes and reservoirs, he said.

"And it may even be a constituent of nitrous oxide, a potent greenhouse gas," he said.

There are other methods of mitigating ammonia emissions from manure storage and treatment facilities, including acidic solution-sprayed scrubbers and bio-filters, and chemicals such as acidified clays and sodium hydrogen sulfate, Mukhtar said.

"Several of these methods have been promising, but high costs, lack of 'staying power' of chemicals and other additives, lack of ammonia recovery for beneficial uses, and the complex operation and management of some of the technologies have restricted their extensive use in animal agriculture," he said.

In comparison, the membrane technology Mukhtar and his associates have been testing is relatively simple.

Gas-permeable tubing is submersed in a tank of liquid manure. A very dilute solution of sulfuric acid is pumped through the tubing, which has a porosity of only 2 microns. To put this in perspective, a typical human hair is 70 microns in diameter.

The method takes advantage of a property of dissolved gases described by Fick's first law of diffusion. A high concentration of a dissolved gas, such as ammonia, will migrate to regions of lower concentration. As the concentration of ammonium is high in the liquid manure and low to zero in the permeable tubing, the ammonium is drawn into the tubing and out of the liquid manure.

Also, the migration is enhanced by ammonium being a base and chemically attracted to the acid in the tubing.

The name of the tubular membrane they used is "expanded polytetrafluoroethylene, which is usually abbreviated ePTFE," Mukhtar said.

The product has several uses including blood filtration and synthetic blood vessel and even dental floss, he said, and once was prohibitively expensive. But with the expiration of several patents for this material and its uses, the cost has dropped dramatically, allowing its use for other applications.

Mukhtar said the next step is to scale up from the small bench model to a large tank, perhaps 100 gallons, he said. The team also wants to experiment with how little tubing can be used, and how dilute the acid solution can be, while still capturing about 50 percent of the ammonium within a reasonable amount of time.

They are also looking ahead to learn how to economically scale up the process for use on the farm.

"Obviously, we can't use a 'gazillion' feet of tubing in a large manure lagoon," Mukhtar said. "Potentially, what we could do is divert some of the flushed manure in a much smaller basin and apply membrane technology to extract ammonia from it."

The manure from which the ammonia has been extracted would then be transported back into the large lagoon, he said

"By doing this repeatedly, we could concentrate ammonia as a relatively high pH solution of ammonium sulfate," Mukhtar said.

The team headed by Mukhtar includes Amir Samani Majd, a doctorate candidate; Dr. MD Borhan, assistant research scientist; and John Beseda, student technician, all based in College Station. The team presented the results of their study in a paper at the American Society of Agricultural and Biological Engineers annual international meeting at Louisville in mid-August. The title of the paper was "An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane."

"Remember, we are capturing ammonia with this process," Mukhtar said. "Not just scrubbing it as other processes do. We might be able to return part or all of its cost of the process as ammonium sulfate, an expensive fertilizer."


Story Source:

The above story is based on materials provided by Texas A&M AgriLife Communications. Note: Materials may be edited for content and length.


Cite This Page:

Texas A&M AgriLife Communications. "New technology could capture ammonia from liquid manure." ScienceDaily. ScienceDaily, 11 August 2011. <www.sciencedaily.com/releases/2011/08/110811100944.htm>.
Texas A&M AgriLife Communications. (2011, August 11). New technology could capture ammonia from liquid manure. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2011/08/110811100944.htm
Texas A&M AgriLife Communications. "New technology could capture ammonia from liquid manure." ScienceDaily. www.sciencedaily.com/releases/2011/08/110811100944.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Blue Bell Recalls All Products

Blue Bell Recalls All Products

AP (Apr. 21, 2015) Blue Bell Creameries voluntary recalled for all of its products after two samples of chocolate chip cookie dough ice cream tested positive for listeria, a potentially deadly bacteria. Blue Bell&apos;s President and CEO issued a video statement. (April 21) Video provided by AP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins