Featured Research

from universities, journals, and other organizations

Climate change and ozone destruction hastened with nitrous oxide used in agriculture

Date:
August 19, 2011
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Researchers have discovered a new binding site for nitrous oxide (N2O). Nitrous oxide reductase, an enzyme containing copper, plays a key role in the biochemical process by reducing N2O to N2. This enzyme is highly sensitive to oxygen and is often precipitated in the reaction chain, meaning large amounts of N2O are released by fertilized fields in the farming industry.

The enzyme N2O reductase has one more sulfur atom in its metal center than was previously assumed.
Credit: Image courtesy of Albert-Ludwigs-Universität Freiburg

Researchers have discovered a new binding site for nitrous oxide (N2O). Nitrous oxide reductase, an enzyme containing copper, plays a key role in the biochemical process by reducing N2O to N2. This enzyme is highly sensitive to oxygen and is often precipitated in the reaction chain, meaning large amounts of N2O are released by fertilised fields in the farming industry.

Nitrous oxide (N2O) harms Earth's climate in two ways. First, N2O is a colourless and odourless greenhouse gas that is 300 times stronger than carbon dioxide (CO2). Second, under the effect of cosmic radiation, it contributes to the destruction of the ozone layer, like halocarbons, or chlorofluorocarbons (CFCs).

N2O is therefore probably the most critical greenhouse gas of the 21st century and is an unwanted by-product of industrial farming. Nitrous oxide reductase, an enzyme containing copper, plays a key role in the biochemical process by reducing N2O to N2. This enzyme is highly sensitive to oxygen and is often precipitated in the reaction chain, meaning large amounts of N2O are released by fertilised fields in the farming industry.

The functionality and mechanisms of this important enzyme had not been thoroughly researched until Dr Anja Pomowski successfully clarified the structure of a N2O reductase, primed under the strict exclusion of dioxygen (O2). Dr Pomowski belongs to the research group headed by Prof Dr Oliver Einsle, a professor at the Institute of Organic Chemistry and Biochemistry of the University of Freiburg and a member of the BIOSS Cluster of Excellence. Together with Prof Dr Walter Zumft from the Karlsruhe Institute of Technology and Prof Dr Peter Kroneck from the University of Konstanz, the team of researchers is presenting their results in the current issue of the journal Nature.

The newly discovered structure shows first that the ratio and amount of substances in the metal centre of the enzyme have only been described incompletely thus far, and that they contain an additional sulphur atom. Second, the team also identified the binding of the N2O substrate to the metal centre. This binding site was a surprise to the scientists, and it has encouraged them to re-evaluate the mechanisms of the enzyme, whose molecular properties Prof Dr Oliver Einsle's group will continue to research in the future.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anja Pomowski, Walter G. Zumft, Peter M. H. Kroneck, Oliver Einsle. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature, 2011; DOI: 10.1038/nature10332

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Climate change and ozone destruction hastened with nitrous oxide used in agriculture." ScienceDaily. ScienceDaily, 19 August 2011. <www.sciencedaily.com/releases/2011/08/110815113538.htm>.
Albert-Ludwigs-Universität Freiburg. (2011, August 19). Climate change and ozone destruction hastened with nitrous oxide used in agriculture. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/08/110815113538.htm
Albert-Ludwigs-Universität Freiburg. "Climate change and ozone destruction hastened with nitrous oxide used in agriculture." ScienceDaily. www.sciencedaily.com/releases/2011/08/110815113538.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


How Nitrous Oxide Is Decomposed: Researchers Identify Structure of Enzyme That Breaks Down Potent Greenhouse Gas

Aug. 22, 2011 — Nitrous oxide is a harmful climate gas. Its effect as a greenhouse gas is 300 times stronger than that of carbon dioxide. Nitrous oxide destroys the ozone layer. In industrial agriculture, it is ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins