Featured Research

from universities, journals, and other organizations

How organisms avoid carbon monoxide poisoning

Date:
September 20, 2011
Source:
Manchester University
Summary:
Scientists have discovered how living organisms -- including humans -- avoid poisoning from carbon monoxide generated by natural cell processes.

Scientists have discovered how living organisms -- including humans -- avoid poisoning from carbon monoxide generated by natural cell processes.

Carbon monoxide is a toxic gas that can prove fatal at high concentrations; the gas is most commonly associated with faulty domestic heating systems and car fumes, and is often referred to as 'the silent killer'.

But carbon monoxide -- chemical symbol CO -- is also produced within our bodies through the normal activity of cells. Scientists have long wondered how organisms manage to control this internal carbon monoxide production so that it does no harm.

University of Manchester researchers, working with colleagues at the University of Liverpool and Eastern Oregon University, have now identified the mechanism whereby cells protect themselves from the toxic effects of the gas at these lower concentrations.

Carbon monoxide molecules should be able to readily bind with protein molecules found in blood cells, known as haemproteins. When they do, for instance during high concentration exposure from inhaling, they impair normal cellular functions, such as oxygen transportation, cell signaling and energy conversion. It is this that causes the fatal effects of carbon monoxide poisoning.

The haemproteins provide an ideal 'fit' for the CO molecules, like a hand fitting a glove, so the natural production of the gas, even at low concentrations, should in theory bind to the haemproteins and poison the organism, except it doesn't.

"Toxic carbon monoxide is generated naturally by chemical metabolic reactions in cells but we have shown how organisms avoid poisoning by these low concentrations of 'natural' carbon monoxide," said Professor Nigel Scrutton, who led the team in the Manchester Interdisciplinary Biocentre within the Faculty of Life Sciences.

"Our work identifies a mechanism by which haemproteins are protected from carbon monoxide poisoning at low, physiological concentrations of the gas. Working with a simple, bacterial haemprotein, we were able to show that when the haemprotein 'senses' the toxic gas is being produced within the cell, it changes its structure through a burst of energy and the carbon monoxide molecule struggles to bind with it at these low concentrations.

"This mechanism of linking the CO binding process to a highly unfavourable energetic change in the haemprotein's structure provides an elegant means by which organisms avoid being poisoned by carbon monoxide derived from natural metabolic processes. Similar mechanisms of coupling the energetic structural change with gas release may have broad implications for the functioning of a wide variety of haemprotein systems. For example, haemproteins bind other gas molecules, including oxygen and nitric oxide. Binding of these gases to haemproteins is important in the natural functions of the cell."

Co-author Dr Derren Heyes, also based in the Manchester Interdisciplinary Biocentre, added: "We were surprised to discover that haemproteins could have a simple mechanism involving unfavourable energetic changes in structure to prevent carbon monoxide binding. Without this structural change carbon monoxide would bind to the haemoprotein almost a million times more tightly, which would prevent the natural cellular function of the haemprotein."

The scientists say the work has potential for the use of haem-based sensors for gas sensing in a wide range of biotechnological applications. For example, such sensors could be used to monitor gas concentrations in industrial manufacturing processes or biomedical gas sensors, where accurate control of gas concentration is critical.

The study, headed by Professor Samar Hasnain, from the University of Liverpool's Institute of Integrative Biology, is published in Proceedings of the National Academy of Science.


Story Source:

The above story is based on materials provided by Manchester University. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. V. Antonyuk, N. Rustage, C. A. Petersen, J. L. Arnst, D. J. Heyes, R. Sharma, N. G. Berry, N. S. Scrutton, R. R. Eady, C. R. Andrew, S. S. Hasnain. Carbon monoxide poisoning is prevented by the energy costs of conformational changes in gas-binding haemproteins. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1109051108

Cite This Page:

Manchester University. "How organisms avoid carbon monoxide poisoning." ScienceDaily. ScienceDaily, 20 September 2011. <www.sciencedaily.com/releases/2011/09/110920080145.htm>.
Manchester University. (2011, September 20). How organisms avoid carbon monoxide poisoning. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/09/110920080145.htm
Manchester University. "How organisms avoid carbon monoxide poisoning." ScienceDaily. www.sciencedaily.com/releases/2011/09/110920080145.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins