Featured Research

from universities, journals, and other organizations

Precise detection by the nose: Researchers decipher interaction of fragrances and olfactory receptors

Date:
December 13, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Banana, mango or apricot -- telling these smells apart is no problem for the human nose. How the olfactory organ distinguishes such similar smells has been uncovered by an interdisciplinary team of researchers. The scientists were the first to shed light on the dynamics of the three-dimensional structure of the binding site of an olfactory receptor. In so doing, they also found a characteristic pattern of hydrogen bonds between odorant and receptor, which accounts for the specificity of the olfactory sensors. Using computer simulations, the team was able to predict whether odorant molecules activate a certain receptor or not.

Banana, mango or apricot -- telling these smells apart is no problem for the human nose. How the olfactory organ distinguishes such similar smells has been uncovered by an interdisciplinary team of researchers at the RUB. The scientists were the first to shed light on the dynamics of the three-dimensional structure of the binding site of an olfactory receptor. In so doing, they also found a characteristic pattern of hydrogen bonds between odorant and receptor, which accounts for the specificity of the olfactory sensors. Using computer simulations, the RUB team was able to predict whether odorant molecules activate a certain receptor or not. "A dream of science and industry is coming true" says smell expert Prof. Dr. Dr. Dr. Hanns Hatt (Department of Cell Physiology).

Related Articles


The study was chosen as cover story of the journal Angewandte Chemie International Edition.

Computer model and living cells

The human nose has about 350 different types of olfactory receptors, each specialising in one or a few smells. "The receptor is like a door lock which can only be opened by the right key" says Dr. Lian Gelis from the Department of Cell Physiology. How the lock is exactly constructed was previously unknown. To solve the puzzle, Dr. Steffen Wolf and Prof. Dr. Klaus Gerwert (Department of Biophysics) set out by creating a computer model of the human olfactory receptor for the smell of apricots. In the model, they mutated several components (amino acids) in the binding site of the protein and predicted whether these receptor variants bind apricot fragrance or not. Gelis und Hatt then verified these predictions using "Ca2+-imaging" on the receptors in the physiological system.

Tango of the molecules

In this way, the researchers showed how the binding site has to be structurally constituted so that the apricot fragrance activates the receptor. Using molecular dynamics simulations, they then analysed the two binding partners in greater depth. They found that, in the dynamic interplay of the interaction between receptor and odorant molecule, specific chemical bonds, called hydrogen bridges, form and separate. "It's like a tango, where the female dancer constantly separates from her partner and joins him again at another point" explains Gerwert. "The receptor uses the dynamic hydrogen bonding pattern to distinguish between activating and non-activating odours."

Predictions for other olfactory receptors

The researchers established how many molecular junctions the interaction partners have to form in order for a smell to activate an olfactory receptor. They also managed to specifically manipulate a receptor protein in the model and in the experiment so that it detected papaya fragrance instead of apricot fragrance. "The findings can help to generate specific 'super-olfactory sensors' for a defined fragrance" says Hatt. "Since olfactory receptors not only occur in the nose, but also in many other tissues in the human body, for example in the prostate, in sperm, and in the intestines, the results may help to develop novel therapeutic approaches." The work was carried out as part of the Collaborative Research Centre SFB 642. The Mercator Foundation supported Prof. Gerwert with a grant.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lian Gelis, Steffen Wolf, Hanns Hatt, Eva M. Neuhaus, Klaus Gerwert. Vorhersage der Ligandenerkennung in einem Geruchsrezeptor durch Kombination von ortsgerichteter Mutagenese und dynamischer Homologie-Modellierung. Angewandte Chemie, 2011; DOI: 10.1002/ange.201103980

Cite This Page:

Ruhr-Universitaet-Bochum. "Precise detection by the nose: Researchers decipher interaction of fragrances and olfactory receptors." ScienceDaily. ScienceDaily, 13 December 2011. <www.sciencedaily.com/releases/2011/12/111213091839.htm>.
Ruhr-Universitaet-Bochum. (2011, December 13). Precise detection by the nose: Researchers decipher interaction of fragrances and olfactory receptors. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2011/12/111213091839.htm
Ruhr-Universitaet-Bochum. "Precise detection by the nose: Researchers decipher interaction of fragrances and olfactory receptors." ScienceDaily. www.sciencedaily.com/releases/2011/12/111213091839.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins