Featured Research

from universities, journals, and other organizations

Nanotechnology: Nanomechanical measurements of unprecedented resolution made on protein molecules

Date:
January 4, 2012
Source:
University of California - Los Angeles
Summary:
Physicists have made nanomechanical measurements of unprecedented resolution on protein molecules. The new measurements are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

"Proteins are the molecular machines of life, the molecules we are made of," Zocchi said. "We have found that sometimes they behave as a solid and sometimes as a liquid.

"Solids have a shape while liquids flow -- for simple materials at low stresses. However, for complex materials, or large stresses, the behavior can be in-between. Subjected to mechanical forces, a material might be elastic and store mechanical energy (simple solid), viscous and dissipate mechanical energy (simple fluid), or visco-elastic and both store and dissipate mechanical energy (complex solid, complex fluid). The viscoelastic behavior characteristic of more complex matter had not been clearly seen before on isolated proteins because mechanical measurements tend to destroy the proteins."

Zocchi and Wang's new nanotechnology method allowed them to apply stresses and probe the mechanics of the protein without destroying it. Wang, now a physics postdoctoral fellow at the University of Illinois in Urbana-Champaign, and Zocchi discovered a "transition to a viscoelastic regime in the mechanical response" of the protein.

"Below the transition, the protein responds elastically, like a spring," Zocchi said. "Above the transition, the protein flows like a viscous liquid. However, the transition is reversible if the stress is removed. Functional conformational changes of enzymes (changes in the shape of the molecule) must typically operate across this transition."

The measurements were performed on the enzyme guanylate kinase, or GK, a member of an essential class of enzymes called kinases. Specifically, GK transfers a phosphate group from ATP (the universal "fuel" of the cell) to GMP, producing GDP, an essential metabolic component, Zocchi said.

The study on the characterization of the "visco-elastic transition" is reported this month in the online journal PLoS ONE, a publication of the Public Library of Science. The research was federally funded by the National Science Foundation's division of materials research and by a grant from the University of California Lab Research Program.

Zocchi and Wang published related findings earlier this year in the journal Europhysics Letters, a publication of the European Physical Society, and the journal Physical Review Letters.

In previous research, Zocchi and colleagues reported a significant step in controlling chemical reactions mechanically last year, made a significant step toward a new approach to protein engineering in 2006, created a mechanism at the nanoscale to externally control the function and action of a protein in 2005, and created a first-of-its-kind nanoscale sensor using a single molecule less than 20 nanometers long in 2003. A nanometer is roughly 2,000 times smaller than the width of a human hair.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Stuart Wolpert. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yong Wang, Giovanni Zocchi. Viscoelastic Transition and Yield Strain of the Folded Protein. PLoS ONE, 2011; 6 (12): e28097 DOI: 10.1371/journal.pone.0028097

Cite This Page:

University of California - Los Angeles. "Nanotechnology: Nanomechanical measurements of unprecedented resolution made on protein molecules." ScienceDaily. ScienceDaily, 4 January 2012. <www.sciencedaily.com/releases/2011/12/111219102232.htm>.
University of California - Los Angeles. (2012, January 4). Nanotechnology: Nanomechanical measurements of unprecedented resolution made on protein molecules. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2011/12/111219102232.htm
University of California - Los Angeles. "Nanotechnology: Nanomechanical measurements of unprecedented resolution made on protein molecules." ScienceDaily. www.sciencedaily.com/releases/2011/12/111219102232.htm (accessed August 31, 2014).

Share This




More Matter & Energy News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins